

C O N T E N T S

Sl.No.	Particulars	Page No.
I.	Study and Evaluation Scheme	
II.	Main Features of the Curriculum	1
III.	List of Experts	2-6
IV.	Need Analysis	7
V.	Profile Development	8
VI.	Job Potential\Job Opportunities	9-24
VII.	Changes In the Syllabus	25
VII.	Year Wise Distribution of Papers	26
1. I YEAR		
1.1	Professional Communication	27-31
1.2	Applied Mathematics-I	32-33
1.3	Applied Physics	34-39
1.4	Applied Chemistry	40-44
1.5	Electrical Engineering-I	45-49
1.6	Engineering Mechanics & Material	50-51
1.7	Component of Information Technology	52-53
1.8	Operating System	54
1.9	Fundamentals of Electronics Devices	55-59
II YEAR		
2.1	Applied Mathematics-II	60-62
2.2	Programming In C & C++	63-64
2.3	Data Communication & Computer Network	65-66
2.4	Office Tools	67-68
2.5	Visual Basic	69-70
2.6	Microprocessor & Its Application	71-74
2.7	Computer Hardware & Maintenance	75-77
2.8	Electronic Instruments & Measurements	78-81
III YEAR		
3.1	Industrial Management & Enterpreneurship Development.	82-83
3.2	Data Structure Using C & C++	84-85
3.3	Internet & Web Technology	86
3.4	Concept of RDBMS Using Oracle	87-88
3.5	Java Programming	89
3.6	MIS & System Analysis & Design	90-91
3.7	Computer Graphics.	92-93
3.8	Environmental Education & Disaster Management	94-96
3.9	Project -i. Problem	97
	ii. Field Exposure	
	iii. Seminar	
	Staff Structure	98
	Space Requirement	99-100
	List of equipment	101-114
	Learning Resource Materials	115
	Annexure-1 Questionnaire	116-118
	Annexure-2 Field Exposure	119

MAIN FEATURES OF THE CURRICULUM

1. Title of the Course : Diploma In Computer Science & Enginnering.
2. Duration of the Course : Three Years
3. Type of the Course : Full Time Institutional
4. Pattern of the Course : Anual System
5. Intake : 60
6. Entry Qualification : High School 10+ with Science Two and Mathematics Two.
7. Admission Criteria : State Joint Entrance Examination

III

LIST OF EXPERTS

1.	Dr. A.S. Darbari	Manager, Darbari	Dhuman Ganj,
2.	Prof. R.M.K. Sinha	Prof & Head Computer Science And Engineering Deptt.	I.I.T., Kanpur
3.	Prof. R.N. Biswas	Prof & Head Electrical Engg. Deptt.	I.I.T., Kanpur
4.	Prof. K.K. Bhutani Campus University	Prof & Head, Computer Centre	Muir College Allahabad Allahabad.
5.	Prof. K. K. Tripathi	Prof. & Head, Electronics H.B.T.I., Kanpur Engineering Deptt.	
6.	Prof. V. K. Jain	Prof. & Head, Computer Science & Engg. Deptt.	H.B.T.I., Kanpur

7.	Shri R. S. Verma Ltd.,	Engineer, Computer Division	Uptron India Lucknow.
8.	Shri Prasant Kumar Arya	H.C.L. Ltd., Lucknow	
9.	Shri Arunara Ray	AMALCO (H.C.L. Ltd.,) Lucknow	
10.	Shri R. C. Yadav Allahabad.	Sr. Engineer, Computer Centre	M.C.C., Allahabad University,
11.	Shri Bal Gopal	Asstt. Prof. Electronics Engineering Deptt.	H.B.T.I., Kanpur
12.	Shri Girish Chandra	Lecturer, J.K Institute of Applied Physics	Allahabad Uni. Allahabad.
13.	Shri C. K. Dwivedi	Lecturer, J.K Institute of Applied Physics	Allahabad Uni. Allahabad.
14.	Shri Om Prakash Allahabad	Head, Instrumentation & Control Engineering	I.E.R.T.,
15.	Shri P. K. Srivastava Allahabad	Head, Electronics Engineering Deptt.	I.E.R.T.,
16.	Prof. P. K. Singh Allahabad	Head, Computer Science	I.E.R.T.,
17.	Shri G. S. Rai Poly., Pilibhit	Head, Electronics Engg.	Govt.
18.	Shri S. C. Gupta Technical	Asstt. Director	Directorate of Kanpur.
19.	Shri S. C. Tewari Polytechnic,	Lecturer, Electronics	Govt. Fatehpur
20.	Shri Akhilesh Verma Polytechnic,	Lecturer, Electronics	Govt. Narendra Nagar, Tehri Garhwal

List of Experts who contributed in the revision of curriculum
of Three year Diploma in Computer Engg.

1.	Shri S. P. Khattri Corporation	Sr. Manager (Systems)	U. P. Development Systems
2.	Shri OM Prakash	Retd. Head (I.C.)	I.E.R.T., Allahabad
3.	Shri D.K.Rudra	H.O.D. (I.C.)	I.E.R.T., Allahabad
4.	Shri R.K.Singh	Lect. Computer	H.B.T.I., Kanpur
5.	Shri S.R.Gautam	Head (I.C.)	Govt. Poly. Kanpur
6.	Shri S. K. Verma Research Training	Professor	Institute of Development & U.P., Kanpur
7.	Shri S.C.Gupta	Head (Computer)	Govt. Poly. Unnao
8.	Shri S.K.Verma I.R.D.T., U.P., Kanpur	Professor	Kanpur
8.	Shri L.S.Yadaw	Lecturer (Computer)	Govt. Polytechnic Kanpur
9.	Shri Ashraf Ali I.R.D.T., U.P., Kanpur	Lect. Computer	

the members of the committee recommended its being adopted after a few ammendments which have been incorporated in the curriculum.

List of experts who contributed in the revision of curriculum of Three Year Diploma in Computer Science & Engineering on dated 8.2.1999. The members of the committee recommended its being adopted after a few ammendments which have been incorporated in the curriculum.

1. Smt. Usha Birjee	Director. I.R.D.T., U.P. Kanpur.
2. Dr. R.Tiwari	Operation Manager I.I.T., Kanpur
3. Dr. S.Tiwari	Hony. Faculty I.E.T./S.J.M.University Kanpur.
4. Dr. S.K.Bajpai	Professor(Computer) I.E.T., Lucknow.
5. Shri. D.S.Yadav	Lecturer (Computer) I.E.T., Lucknow.
6. Shri Subhash Chandra Gupta	Assistant Director

7. Shri S.C.Gupta	D.T.E.,Kanpur. Assistant Director
8. Shri L.S.Yadav	D.T.E.,Kanpur Head(Computer)
9. Shri D.S.Kushwaha	Govt.Polytechnic,Kanpur. Lecturer(Computer)
10. Shri J.P.Yadav	D.T.E.,U.P.,Kanpur Dy.Director
11. Shri M.R.Khurana	I.R.D.T.,U.P.Kanpur. Asst. Professor
12. Shri M.P.Singh	I.R.D.T.,U.P.Kanpur. Asst. Professor
13. Shri Ashraf Ali	I.R.D.T.,U.P.Kanpur. Professor
14. Shri K.M.Gupta	I.R.D.T.,U.P.Kanpur. Asstt.Professor
	I.R.D.T.,U.P.Kanpur.

List of experts who contributed TO Change the of curriculum of Three Years Diploma in Computer Science & Engineering to Semester System held on 17.04.99.

1. Smt. Usha Birjee	Director. I.R.D.T.,U.P. Kanpur.
2. Shri R.K.Singh	Asstt.professor
3. Shri S.C.Gupta	M.M.M.Engg. College Gorakhpur Assistant Director
4. Shri L.S.Yadav	D.T.E.,Kanpur Head(Computer)
5. Shri B.R.Verma	Govt.Polytechnic,Kanpur. Head(Computer)
6. Shri D.S.Kushwaha	Govt.Polytechnic,Jhansi. Lecturer(Computer)
7. Shri S.N.Singh	D.T.E.,U.P.,Kanpur Lecturer(Computer)
8. Shri J.P.Yadav	Govt.Polytechnic, Unnao. Dy.Director
9. Shri Ashraf Ali	I.R.D.T.,U.P.Kanpur. Professor
10. Shri M.P.Singh	I.R.D.T.,U.P.Kanpur. Asst. Professor
11. Shri K.M.Gupta	I.R.D.T.,U.P.Kanpur. Asstt.Professor
	I.R.D.T.,U.P.Kanpur.

List of experts who contributed to Change the of curriculum of Three Year Diploma in Computer Science & Engineering held on 27.02.2003 at I.R.D.T . U.P., Kanpur.

1. Shri Gurdeep Singh	Director. I.R.D.T.,U.P. Kanpur.
-----------------------	------------------------------------

2. Shri Rajeev Misra	Head of Department Information Technology H.B.T.I.Kanpur
3. Shri Raghu Raj Singh	Head of Department Computer Science & Engg. H.B.T.I.Kanpur.
4. Shri S. C. GUPTA	HOD Computer Science & Engg. Dr. Ambedkar Institute of Technology for handicapped, Kanpur
5. Shri M.A. Idrees	Senior System Analyst NIC, Yojna Bhawan Lucknow.
6. Shri Alok Tiwari	District Informatics Officer Kanpur Dehat.
7. Shri B.R. Verma	Head Computer Govt. Polytechnic Lucknow
8. Shri L.S. Yadav	Head Computer Govt. Polytechnic Kanpur
9. Shri Saurabh Agrawal	Lecturer Computer United Institute of Designing Kanpur
10. Shri Ashok Kushwaha	Lecturer Computer Govt. Girls Polytechnic Lucknow
11. Shri Ashraf Ali	Professor I.R.D.T., U.P.Kanpur.

List of experts who contributed to Change the of curriculum of Three Years Diploma Course in Computer Scinece & Engineering held on 15.10.2003 at I.R.D.T . U.P., Kanpur.

1. Shri Alok Tiwari	District Informatics Officer Kanpur Dehat.
2. Shri B.R. Verma	Head Computer Govt. Polytechnic Lucknow
3. Shri D. Singh	Head Computer Govt. Girls Polytechnic, Allahabad
4. Shri S. N. Singh	Head Computer Govt. Polytechnic Unnao
5. Shri L.S. Yadav	Head Computer Govt. Polytechnic Kanpur
6. Shri Saurabh Agrawal	Lecturer Computer United Institute of Designing Kanpur
7. Shri Alok Gupta	HIG 174, Kalish Vihar, Kalyanpur, Kanpur
8. Shri R. Goel	Programmer, I.E.T., Lucknow
9. Shri Ashraf Ali	Professor I.R.D.T., Kanpur

List of experts who contributed to Change the of curriculum of Three Years Diploma Course in Computer Scinece & Engineering held on 15.11.2007 and 16.11.2007 at I.R.D.T . U.P., Kanpur.

1. Shri Ashraf Ali	Head (Computer) Govt. Girls Poly., Lucknow
2. Shri L.S. Yadav	Head Computer Govt. Polytechnic,Lucknow
3. Shri B.R. Verma	Head Computer/Asstt. Director D. T. E., Kanpur
4. Shri Alok Tiwari	District Informatics Officer Kanpur Dehat.
5. Shri Jitendra Kumar	Sr. Manager U. P. Tech, Mall Road, Kanpur
6. Shri Kurunesh Yadav	Lecturer, G.G.P., Lucknow
7. Shri Ashok Kushwaha	Lecturer, G.G.P., Lucknow
8. Shri S. K. Agarwal	Lecturer, G.G.P., Allahabad
9. Smt Sarla Agarwal	Lecturer(Electronics), Govt. Poly., Barillary
10. Smt. R. P. Alam.	Assistant Professor I. R. D. T., Kanpur

IV. NEED ANALYSIS :

With the development of civilisation, human needs to keep on increasing thier fulfilment needed simulation, analysis of lot of informations too became essential. Now the individual responsibilities of every responsible citizen grew up to such a light that it is difficult for him to handle them successfully. Human memory too has its own limitations. So here comes the computer to help in all kind of decision making, whether it is highly complicated research work, war strategy, market speculations or day-to-day need of human life etc. As a matter of fact every individual activity needs decision making. So the computer

is the need of organisations and also the need of individual being. It will not be exaggeration if we say that it is "Computer era". So is the need for developing a course for computer engineering at diploma level. The course aims to develop personnel, capable of taking responsibilities such as installation, repair and maintenance and operating computer units. It is supposed that such personnel will not face any dearth of employment because of omnipresent nature of computer.

The syllabus for diploma in computer Engineering has been developed to meet above mentioned aims. Obviously achievement of any aim requires knowledge of the means and procedures of their utilisation. With this view various courses have been carefully selected and their length and depth decided by experienced experts in the field.

V. PROFILE DEVELOPMENT :

A tool in the form of questionnaire for getting information about job potential, job opportunities, manpower requirements and job activities of Diploma holder in Computer Engineering was designed and sent to various organisations, industries, higher technological Institutions and Polytechnics. The response was not very much encouraging. So efforts were made to get feed back through mutual interaction with the experts of above organisations, industries, higher technological institutes and polytechnics. The feed back received was discussed and analysed in a workshop and a draft curriculum was prepared adopting the following procedure.

1. Listing job potential and job activities.
2. Analysing activities into knowledge and skill.
3. Determining course objectives.

4. Planning horizontal and vertical organisation of the subjects.
5. Developing study and evaluation scheme.
6. Development of detailed course content and coverage time keeping in view the knowledge and skill requirement.
7. Determination of resource input in the form of human resource, space, equipment etc.

The so prepared curriculum was sent for comments of experts in various higher technological institutions and senior personals in industries. The suggestions thus received and those through personal contacts were incorporated where found suitable. Finally revised curriculum was put before an expert Committee approved by the "Government of Utter Pradesh" for its final approval. The Committees suggestions though very nominal too were respectfully incorporated to give it its final shape.

It is hoped that revised curriculum of Diploma in Computer Engineering will be useful in producing middle level manpower for world of work.

VI. JOB POTENTIAL/JOB OPORTUNITIES

JOB POTENTIAL

Background Information Regarding Computer Industry:

Most of the industries in computer area are in private sector. The job designations are not standard. They change from firm to firm depending upon the size of firm and the nature of work, the firm is engaged in R & D or marketing software development etc. In general the jobs for a diploma holder in Computer engineering are available in the following areas :

- i. Service Division.
Maintenance, service and installation of computer system.
- ii. Production and Quality Control Division.
- iii. Marketing division.
- iv. Commercial (stores, purchase and pricing)
- v. Research and Development.

Assessment of job potential from Computer Industry:

A questionnaires was sent to 30 different industries dealing with different aspects of Computer Engineering. On the basis of information collected and discussions held during the

visits to these industries a chart showing manpower spectrum of some of the computer industries has been prepared. This chart is attached here. In this chart a typical manpower employment in computer is shown. It also shows the relative position of the personnels in computer field. The nomenclature of the designations is by no means standard and the chart only indicates their relative position.

JOB OPPORTUNITIES

The possible job opportunities for the product of this curriculum are

- 1.3.1. Junior engineer/Design Assistant/Senior Technical Assistant in R&D, Quality Control and Testing activities.
- 1.3.2. Shopfloor manager/Assembly supervisor in manufacturing and production Activities.
- 1.3.3. Installation Engineer/Service Engineer/Junior Engineer/Junior Service Engineer in installation, Service and Custom Support Activities.
- 1.3.4. Junior Marketing Executive/Junior Purchase Officer/Junior Stores Officer in Marketing and Commercial activities

ACTIVITIES/JOB DESCRIPTION

Service Division:

Maintenance, service and installation of computer systems

Identify hardware and software faults and rectify them.

Suggests the desirable changes in the design in view of this maintenance experiences.

Rectify fault by component and card level.

Advises the customer on site preparation and checks the site.

Install the systems and tests its operation.

Train the customer in the operation and the use of the system.

Production and Quality Control:

Indenting the material from stores and schedule the work of skilled workers.

- Fault finding in assembly work by visual inspection.
- Guiding skilled workers in component identification, component testing and precision assembly work.
- Fabricate (if required) test and interconnect different sub-assemblies and subsystems like power supply, interface, processor and memory units, video display unit, printer, plotter, graphic monitor, hard disc drives interface etc.
- Managing personnel like technicians and skilled workers.

Marketing:

- Meeting with prospective customer under the guidance of sales engineer.
- Arranging demonstration at the site of customer.

Commercial:

- Assists sales engineer in the sales of computer system (Contacts customer, arranges demonstration, preparation of technical documents and specification).
- Purchase material (writes specifications, receiving quotations, prepares and checks comparative statements, checks bills).
- Prepare bill for service charges and cost of materials used.
- Incoming inspection (checking quality, quantity and specification of the material supplied against orders).
- Maintains stocks and records.

Research & Development Work:

- Design simple microprocessor based subsystem (without optimisation) under the guidance of design engineer.
- Printed circuit board (PCB) layout design under the guidance of design engineer.
- Fabricates prototype of a subsystem or system.
- Plans flow of activities for production along with engineer.
- Test systems at card level, subsystem level and at complete

system level.

- Documents the layouts, circuit diagram, procedures and processes.
- Develops systems software, the line drivers and interface with the guidance from engineer and runs it.
- Communicates with engineer and assists him in converting technical ideas into practical shape.
- Assist engineer in laying test procedures, tests standards and maintaining the quality of the products.

VII. JOB ACTIVITIES & ACTIVITY ANALYSIS:

ACTIVITY	KNOWLEDGE	SKILLS
1. Service Division (Maintenance, Service & Installation of Computer:		
1.1 Identify hardware & software faults & rectify them.	Working of the total System CPU, peripherals interfaces & system software.	Using diagnostic routines for fault location and identifying the fault at sub system level, card level, chip level, user level.
1.2 Suggests the desirable change in the design in view of his maintenance experience.	Faults diagnoses procedure including introduction of fault and fault diagnosis logics.	Use of test equipment for fault location.
	Diagnostics methods of running them interpreting results.	Study of literature (HW & SW) aspects and adapt the engineering change notes.
	Fault identification at system level, subsystem level, card level component level & user level.	Preventive maintenance.
	Error rates in communication peripherals.	
1.3 Rectify fault at Data communication		

component & card level. equipments.

Data communication principles, spare parts & identification.

Use & knowledge of tools and test equipment for maintenance including PBRS equipment.

Understanding and implementing engineering change notes for both hardware & software.

Performance measurement of computer system.

ACTIVITY	KNOWLEDGE	SKILLS
	Preventive maintenance schedules and its consequence, knowledge of terms like MTBF, MTRR, response time,	Maintenance of log reporting systems of user.
	Cost of down time.	
	Log maintenance (Symptoms, diagnosis and corrective action).	
	Maintenance procedures and techniques for CPU, peripherals, interfaces power supplies.	
	Complaint reporting system, performance reporting system.	
	Maintain ability of	

system software, updating and its consequences user accounting.

Installation

1.4 Advise the customer site preparation & check the site. Layout considerations & planning influence of factor like vibration humidity, airconditioning systems on system performance, measurement, dust prevention specification in regard to above. Comparative study of air conditioning system such as window & A.C. plant and package, power disturbances earthing & its specifications. Single, Three Phase supplies, isolation stabilizers switches, power distribution system and components and materials safety design.

Low power transformer, Servo regulated power supplies.

Communication skills oral & written. Measurement of humidity, vibration, temperature, dust, testing of earthing isolation, prepare wiring diagram & trace the wiring system Operate various test equipment, A/C system voltage regulators and isolation transformers. Wiring & preparation of wiring diagrams

ACTIVITY	KNOWLEDGE	SKILLS
1.5 Installs the system & test its operation.	Wiring, interpretation of installation & wiring drawings. Knowledge procedures.	Install the systems, run diagnostics, run system software, rectification of faults, train operators
1.6 Trains the customers in the operation and use of system.	Principles of working of operation of each system and sub system.	Practice in using computer system.
2. Production & Quality Control:		

2.1	Identing the material from stores and schedule the work of skilled workers.	Concept of production document, drawing concepts principles of working of the components (ICs, discrete components, active passive and metal ware).	Practice of reading, drawing, knowledge of English.
2.2	Fault finding in assembly work by visual inspection.	Material used in assembly process. Handling of LSI and other components.	Practice in soldering & desoldering work.
2.3	Guiding skilled workers in component identification, component testing and precision assembly work.	Reading electronic drawing. Terminology, symbols, correlate the drawing with related components.	Component identification colour code of register capacitor.
2.4	Fabricates, (if required) test & inter-connects different subassemblies and subsystem like power supply, interfaces, processor and memory units, video display unit, printer, plotter, graphic monitor, hard disc, drive interfaces etc.	System block diagram, function of each block run diagnostic programme, diode errors, operation of test equipments like storage oscilloscope logic analyser, logic probe, meters, DBO, oscillator, pulse generator Block diagram of software, linear circuits different devices & digital circuit & microprocessors, magnetic recording techniques, knowledge of assemblers.	Practice in using equipments (Electronic as well as special type), able to write & run a small programme in assembly & high level language (BASIC & COBOL).
2.5	Managing personnel like junior technicians and skilled workers.	Concepts of Human relations, dignity of labour	

ACTIVITY	KNOWLEDGE	SKILLS
3. Marketting		
3.1 Meeting with prospective customer under	Commerical term, types of payments, insurance	Practice in operation of small computer.

the guidance of sales engineer.	communication skill, command on language advertising technique communicate computer specifications (including various peripherals) understanding of customers application. Analyse specifications, vis-a-vis other computer.
3.2 Arranging demonstrations at the site of customer.	
4. Commercial	
4.1 Assists sales engineer in the sales of computer system (Contacts customer arrange demonstrations, preparation of documents & specifications).	
4.2 Purchase & sales of computer system (Contact customer, arrange demonstration).	Source of supply knowledge of & writing detailed specifications of the materials & equipment needed in computer manufacture; computer peripherals, import procedures. Document preparation for quotations, specifications & demonstration of systems.
4.3 Prepares bills for service charge and cost of material.	Commerical terms like FOR, FOB, Desitnation terms of sales & purchase, Sales tax income tax procedure.
4.4 Incoming inspection (inlcuding checking qulaity, quantity and specifications of the material supplied against orders).	Read specification, data sheet, component testing procedures. Specifications of components, identification of components, stores entries.
	Written communication skill. Understand customer needs.
	Demonstrate the systems. Quotation preparation & ordering equipment.
	Practice in using various forms.
	Practice in the operation of instruments, testing of component, error report preparation.

ACTIVITY	KNOWLEDGE	SKILLS
	Component identification, detailed specification, storage systems of components.	
4.5 Maintains stocks and records.	Registers, their types & method of maintaining entries.	Practice in dealing with different entries in the registers, inventory control.
5. R & D		
5.1 Design simple up based sub system without optimisation under the guidance of engineer.	Digital logic design, Microprocessor, computer architecture system integration, Application areas, design of memory boards peripheral interfacing techniques using manuals, chip, chip using manuals, chip, chip substation, situation data facing of peripherals and communication modules, information regarding multiplexers, A/D & D/A interfacing chips. base standards, Communication protocols, Characteristics of components, noise levels and causes.	Working with digital linear and up circuits using VLSI, LSI, MSI chips, for a particular use, Acquiring information regarding the chips from data books/sheets. Chip subsituation, Inter-substation, situation data facing of peripherals and communication modules, information regarding multiplexers, A/D & D/A interfacing chips.
5.2 PCB layout design under the guidance of design engineer	Noise, Noise levels & cause, principles of PCB design, familiarity with chips, knowledge of connectors, Knowledge of PC boards, Knowledge of PCB drafting aids and drafting techniques, back pannels and multiboard modules. Standard PCB size.	Drawing layouts, practice in making the layouts.
5.3 Fabricates prototype of a subsystem or system (Contact customer, arrange demonstration).	Mechanical packaging, considerations in packaging & design, organise a small workshop, draw flow of activities, guide, small groups in fabrication, wire wrapping. Thermal properties of metals and	Soldering & Desoldering techniques component mounting chassis fabrications, drilling & surface treatment of PCBs. Wire wrapping techniques, screen printing, painting. Testing of PCB circuit.

components. Mounting
modes fuse and safety
devices. Connector,
cables and wiring, HDS.

ACTIVITY	KNOWLEDGE	SKILLS
5.4 Plans flow of activities for production along with engineer.	PERT, time consciousness knowledge of production activities.	
5.5 Test system at card level, sub-system systemsnlevel.omplete	Locating faults, identification of causes (com- testnequipmentiincluding programmable test equipment and calibration of test equipment. Interpretation of test results. Visible defects, chips and equivalent chips. Noise cause.	Fault finding in PCBs, use of test equipment.
5.6 Documents the layouts circuit diagrams, procedures and processes.	Documentation of test equipments, test procedure, flow activities, quality control standard computer equipment and diagnostics programmes of system software.	Documentation skills.
5.7 Develops system software, the line drivers & interfaces with the guidance from engineer and runs it.	Fundamentals of programming, logic, programming language, applications, Knowledge of system software, operating systems, compilers drivers and other system software. Efficient use of system software, write small diagnostic programmes to test system, generation and running of system software, knowledge of application packages and their running. Assembly	Programme wirting debugging skills in high level & assembly languages. Documentation of programmes. Modification and adaption of software.

		and machine language programming. Modification & adaption of software.	
5.8	Communicates with engineers and assist him in converting technical ideas into practical shape.	<p>Understand the language of the engineer.</p> <p>Understand the drawing, notation specifications</p> <p>Fabricate, translate or code as per the specification use modules, sub assemblies written/prepared by others.</p>	<p>Fabricatory skills, Coding skills, Translative skills.</p> <p>Modification and adoption of circuits and programs.</p>

ACTIVITY	KNOWLEDGE	SKILLS
5.9 Assists engineer in laying test procedures, test standards and maintaining the quality of the products.	<p>Quality control, quality checking procedures and standards.</p> <p>Documentation of test procedures reporting.</p> <p>Effect of environment on the behaviour of components and systems.</p>	<p>Testing for quality.</p> <p>Documentation & reporting skills</p> <p>Fabricate circuits, test the circuits make PCBs.</p>

VIII. COURSE OBJECTIVE:

Preceding section details the knowledge and skills required for middle level personnel of computer industry. The objectives are derived which deserve greater weightage are marked with asterisk.

Course objectives lay the foundation for planning educational programme.

1. Knowledge:

1.1 He must acquire basic concepts in electronic drawing

(including standard symbols for electronic components active as well as passive).

- 1.2 He must acquire basic concepts and principles of working of linear and digital circuits using discrete components and integrated circuits.
- 1.3 He must have the knowledge of testing procedure of active and passive components, (including integrated circuits) discrete and digital circuits by making use of different test instruments as per to their specification.
- 1.4 He must acquire knowledge of system block diagram and working principles of different computer peripherals.
- 1.5 He must acquire the knowledge of making P.C.B. layouts and learn drafting techniques.
- 1.6 He must acquire the knowledge of efficient use of system software by writing a small diagnostic programme to test system.
- 1.7 He must acquire the knowledge of working principles of the total system i.e. C.P.U., peripherals, interfaces and system software.

2. Skill

- 2.1 He must acquire skill in finding faults in a computer system. The fault may be at component level or at card level or at sub system level. After finding fault he must be able to repair to it.
- 2.2 He must acquire skill in preparation of site for installation of a computer.
- 2.3 He must acquire skill in installing different subsystem (Power supply, Video display unit, C.P.U. , Printer, Plotter, Graphic monitor, Disc drives etc.).
- 2.4 He must acquire skill in operating and testing the working of different subsystems installed.
- 2.5 He must acquire skill making (or designing) layout on printer circuits board for a given electronic circuit.
- 2.6 He must acquire skill in fabricating (electronic circuit using different electronic components including ICs) on a

printed circuit board according to a giveen circuit diagram.

2.7 He must acquire skill testing the performance of an electronic circuit fabricated on a printed circuit board making use of different electronic instruments.

3. Attiude:

3.1 He should have open minded approach while finding fault in the system.

3.2 He should have analytical approach while dealing with any problem.

3.3 He should be a keen observer while finding fault with the system and circuits.

3.4 He should have habit of reading commerical and technical literature regarding computer.

COURSE OBJECTIVE		CURRICULUM AREA		
Basic Science Subject	Specialised Tech. Area	Core Engg. For Computer Engineering	Basic Engg. Science Subject	
El- Physics	1.1 He must have acquire basic Engineering Applied concept in Electronic Drawing (including standard symbols for electronic components (active as well as passive)).	Electronic component & Material	Drawing, Electrical & Electronic Drawing.	
Applied Engineering	1.2 He must acquire basic concepts and princip- Physics,	Electronic Devices &	Electrical	

Applied Mathematics	les of working of linear and digital circuits using discrete components & integrated circuits.	ckts principles of digital electronics.
Electron-	1.3 He must have the knowledge of testing procedure of active and passive components (including integrated circuits) by making use of different test instruments as per to their specification.	Electronic Device & circuits; digital ckts Electronic measurement & instrument Electronic workshop (Printed circuits.
Applied Physics, Engineering.	1.4 He must acquire knowledge of system block diagram and working principles of different computer peripherals.	Computer architecture, peripherals & interface.
Mathema-	1.5 He must acquire the knowledge of making PCs layouts and learn drafting technique.	Project (He should make layouts of PCB in this project.
tics	1.6 He must acquire the knowledge of efficient use of system software by writing a small diagnostic programme to test the system.	Communication & Data Transmission computer architecture microprocessor & application, Communication Data transmission peripherals & Interfaces, Introduction to

COURSE OBJECTIVE		CURRICULUM AREA		
Basic Science Subject		Specialised Tech. Area	Core Engg. For Computer Engineering	Basic Engg. Science Subject
		system software data structure.		
1.7 He must acquire the Engineering Applied knowledge of working Mathematics principles of the total system, i.e. C.P.U., peripherals, interface and system software.		Peripherals & Interface Introduction to system software computer architecture & microprocessor & its application.	Digital Electronics, Computer test me- asuring equipment	Digital Electronics, Computer Drawing
2. Skills				
2.1 He must have acquire skill in finding faults in a computer system. the fault may be at component level or at card level or at subsystem level. After finding fault he must be able to repair it.		Fault diagnosis installation & Maintenance documentation & fabrication.	Digital Electronics, Electronic Drawing, Test & measuring equipment	Electronic Drawing, Drawing.
2.2 He must acquire skill in preparation of site for installation of computer.		Installation & Maintenance.	Applied Electrical Engg. Drawing, Principles of Electrical Engg.	Drawing, Drawing.

2.3 He must acquire skill in installing different subsystem power supply, VDU, Printer, Plotter, Graphic monitor, Disc drive etc.	Engineering Applied Physics	Computer architecture installation & maintenance peripherals & interface.	Electronic Devices & Circuits. Digital Electronics.	Drawing, Workshop Practice
2.4 He must acquire skill in operating and testing the working of different subsystem installed.		Installation & Maintenance Computer Architecture peripheral & interfaces.	Electronic Instruments & Measuring & Digital electronics, Electronic devices & circuits.	
2.5 He must acquire skill in making (or designing layouts on printed circuited board for a given electronic circuit.		Project	Electronic workshop, Electronic device & circuits.	

COURSE OBJECTIVE		CURRICULUM AREA		
Basic		Specialised Tech. Area	Core Engg. For Computer Engineering	Basic Engg. Science Subject
Science				
Subject				

2.6 He must acquire skill in fabrication an electronic components (inlucing ICs) on a printed circuit board (Mechanical) according to a given circuit diagram.	Engineering	Project & Industrial training	Electronic workshop, Electronic devices & circuits, Digital circuit & system, Electr-	Drawing, Workshop Practice
--	-------------	-------------------------------	---	----------------------------

		onic drawing.
2.7 He must acquire skill in testing the performance of an electronic circuit fabricated on a printed circuit board.	Engineering	Project fundamental of digital control
		Digital circuits & system, Drawing Electronic Device & circuits, Electronic Instrument & measurement, Electronic measurement & Instrument, Electronic drawing, Electric workshop.
2.8 He must acquire skill in writing specification of a computer and its subsystem and peripherals. Making use of the quotations he must be able to make a comparative statement.		Computer architecture peripheral & interfaces industrial management
2.9 He must acquire skill in arranging demonstration of a computer system and its peripherals.	Engineering	Computer architecture Test & measuring equipment Microprocessor & Application. Peripheral & Interface. Industrial training.
		Principles of Electrical Drawing, Engg., Applied Workshop Electrical Practice Engg., Electronics Drawing.
2.10 He must acquire skill in preparation of documents (to be used in production, sales, maintenance & installation) with the help and guidance from an engineer.	Engineering	Documentation
		Electronic Drawing, Digital Workshop Electronics. Practice Electronic Devices & Circuits. Electronic

COURSE OBJECTIVE		CURRICULUM AREA		
Basic		Specialised Tech. Area	Core Engg. For Computer Engineering	Basic Engg. Science Subject
Science				
Subject				
		interface project. Computer organisation & programming.	Workshop.	

CHANGES IN THE SYLLABUS:

I YEAR

1.7 COMPONENT OF IT

1. In topic no 4. "Mobile Computing" is shifted in topic no. 6 and new matter added as "Tele conferencing".
2. In Topic no. 6 "CPU and Mathematical Logid" is shifted in II Year in Paper No. "2.7 Computer Organisation".

1.8 OPERATING SYSTEM

1. In Topic No 5 and 7 removed.
2. In Topic No. 6 "Types of windows and difference" added.
3. In Lab Experiment No. 1 is Removed.

1.9 FUNDAMENTAL OF ELECTRONICS DEVICE

1. In Topic no. 2- 2.1, 2.2,2.3 removed
2. In Topic no. 3- 3.3 removed.
3. In Topic no. 5- 5.1 and 5.2 shifted to topic no. 4- 4.2
4. In Topic no. 6 "Feedback amplifier" named as topic 7. "Operational Amplifier" added to topic no. 6.
5. In lab experimental no. 18 added "Use of OP-AMP.....".

II YEAR

2.2 PROGRAMMING IN C & C++

1. In Topic no. 4 "Generalasation, Specialization" added.

2.3 DATA COMMUNICATION & COMPUTER NETWORK

1. New paper 2.3 "Data Communication & Computer Network"

introduce in place of "Computer Communication Network".

2.4 OFFICE TOOLS

1. New Paper 2.4 "Office Tools" introduce in place of "MS office".

2.5 VISUAL BASIC

1. In topic no. 6 VB.NET is added. and in lab a new experiment VB.NET added.

2.7 COMPUTER HARDWARE & MAINTENANCE

1. The above paper redesigned.

III YEAR

3.3 INTERNET AND WEB TECHNOLOGY

1. This paper is redesigned in place of 2 paper named as "Internet" and Other as "Web Technology".

* ASP programme, redesigned HTML and Web Building added.

3.4 CONCEPTS OF RDBMS

1. In topic no. 5 SQL commands introduced.

3.5 JAVA PROGRAMMING

1. The above new paper introduced.

EQUIPMENT LIST FOR COMPUTER CENTRE, STAFF STRUCTURE & SPACE REQUIREMENT

Equipment list for computer centre revised as per changed syllabus and number of equipment, staff structure and space requirement revised for the intake of 60 students.

YEARWISE DISTRIBUTION

1. I YEAR

- 1.1 Professional Communication
- 1.2 Applied Mathematics-I
- 1.3 Applied Physics
- 1.4 Applied Chemistry
- 1.5 Electrical Engineering-I
- 1.6 Engineering Mechanics & Material
- 1.7 Component of Information Technology
- 1.8 Operating System
- 1.9 Fundamentals of Electronics Devices

II YEAR

- 2.1 Applied Mathematics-II
- 2.2 Programming In C & C++
- 2.3 Data Communication & Computer Network
- 2.4 Office Tools
- 2.5 Visual Basic

- 2.6 Microprocessor & Its Application
- 2.7 Computer Hardware & Maintenance
- 2.8 Electronic Instruments & Measurements

III YEAR

- 3.1 Industrial Management & Enterpreneurship Development.
- 3.2 Data Structure Using C & C++
- 3.3 Internet & Web Technology
- 3.4 Concept of RDBMS Using Oracle
- 3.5 Java Programming
- 3.6 MIS & System Analysis & Design
- 3.7 Computer Graphics.
- 3.8 Environmental Education & Disaster Management
- 3.9 Project -i. Problem
 - ii. Field Exposure
 - iii. Seminar

I YEAR

1.1 PROFESSIONAL COMMUNICATION

[Common to All Engineering/Non Engineering Courses]

L	T	P
3	-	2

Rationale:

Communication forms an important activity of diploma holder. It is essential that he/she should be in a position to communicate in writing and orally with superiors, equals and subordinates. This subject aims at providing working knowledge of languages like Hindi and English so as to train the students in the art of communication. It is suggested that maximum attention should be given in developing Communication abilities in the students while imparting instructions by giving maximum emphasis on practice.

Sr.No.	Units	Coverage time		
		L	T	P
1.	Introduction to communication methods meaning, channels & media written and verbal.	5	-	-
2.	Development of comprehension of English & Hindi through study of text material & language exercises.	20	-	-
3.	Development of expression through A. Letters (English & Hindi)	10	-	-

B. Report writing (English)	10	-	-
Note making and minutes writing			
4. Composition	10	-	-
5. Grammer	20	-	-

	75	-	50

1. PART I : COMMUNICATION IN ENGLISH

- 1.1 Concept of communication, importance of effective communication, types of communication, formal, informal, verbal and nonverbal, spoken and written. Techniques of communication, Listening, reading, writting and speaking, Barriers in communication, Modern tools of communication- Fax, e-mail, Telephone, telegram, etc.
- 1.2 Development of comprehension and knowledge of English through the study of text material and language exercises based on the prescribed text book of English.
- 1.3 Development of expression through:

1.3.1 Letters :
 Kinds of letters:-
 Official, demi-offical, unofficial , for reply or in

reply, quotation, tender and order giving letters.
 Application for a job.

1.3.2 Report writing and Note making and minutes writing.

- 1.4 Grammer : Transformation of sentences, Preposition, Articles, Idioms and Phrases, One word substitution, Abbreviations.
- 1.5 Composition on narrative, descriptive, imaginative, argumentative, discussion and factual topics.

2. PART II : COMMUNICATION IN HINDI

- 2.1 Development of comprehension and knowledge of Hindi usage through rapid reading and language exercises based on prescribed text material developed by IRDT.
- 2.2 Development of expression through ;

Letter writing in Hindi:
 Kinds of letters:-
 Official, demi-offical, unofficial , for reply or in

reply, quotation, tender and order giving letters,
Application for a job.

(1) Paper should be in two parts, part I - English and part II Hindi.

COMMUNICATION AND PRESENTATION PRACTICES

1.A. Phonetic transcription

B. Stress and intonation :

(At least 10 word for writting and 10 word for pronunciation)

2. ASSIGNMENT : (Written Communication)

Two assignment of approximately 400 word each decided by the teachers.

SUGGESTED ASSIGNMENTS :

1. a picture/photograph

2. an opening sentence or phrase

3. a newspaper/magazine clipping or report

4. factual writting which should be informative or argumentative.

3. Oral Conversation:

1. Short speeches/declamation : Bid farewell, Felicitate somebody, Celebrate a public event, Offer condolences

2. Debate on current problems/topics

3. MockInterview : Preparation, Unfolding of personality and Expressing ideas effectively

4. Group discussion on current topics/problems

5. Role Play/ general conversation : Making polite enquiries at Railway Station, Post Office, Banks and other Public places, Replying to such enquiries, enquiring about various goods sold in the market and discussing their prices. Complaining about service at Hotel, restaurant, Offering apologies in reply to such complaints, complain to a company about a defective product you have brought, reply to such complaints.

6. Presentation skill, Use of OHP and LCD.

4. Aural :

Listening to conversation/talk/reading of short passage and then writting down the relevant or main points in the specified number of words and answering the given questions

The assignments/project work are to be evaluated by the internal/ external examiner. The distribution of 30 marks

e.g.

- 10 marks for assignment (Given by subject teacher as sessional marks)
- 10 marks for conversation and viva-voce
- 10 marks for phonetic transcription

STRUCTURE OF COMMUNICATION TECHNIQUE PAPER

Distribution of Marks

Theory Paper : 50 Marks
Sessional : 20 Marks
Practices : 30 Marks

Q1. Question based on the topics prescribed text material will be set to test the candidates ability to understand the content, explain words and phrases, making sentence of given words and ability to summarise will be included. All questions will have to be answered.

A. from English Text Book 10 Marks
B. from Hindi Text Book 5 Marks

Q2. Candidates will be required to write one letter (English) and one letter in (Hindi) from a choice of two -

A. English Letters 5 Marks
B. Hindi Letters 5 Marks

Q3. Report Writting on given outlines 5 Marks

Q4. There will be a number of short answer questions to test the candidates knowledge of functional grammer, structure and usage of the language. All the items in this question will be compulsory. The grammar questions has four parts -

(Total Part: A For 5 Marks, B For 3 Marks, C For 3 Marks and D For 4 Marks)

A. This part of the question has to do with the transformation of sentences. English uses several patterns of sentence formation and the same meaning can be expressed by several patterns e.g. Active to Passive voice and vice versa, Direct to Indirect and vice versa, Reframing sentences by changing part of speech e.g. Noun to Adjective, Interchanging degree of comparison.

Interchanging Moods - Affirmative to Negative, Assertive to Interrogative or to exclamatory

- B. The second part usually requires blanks in a sentence to be filled in with a suitable preposition and articles.
- C. The third part is usually an exercise on tenses.
- D. The fourth part concerns with one word substitution and abbreviation, uses of idioms and Phrases.

Q5. COMPOSITION : (About 300 Words) (5 marks)

Candidates will be required to select one composition topic from a choice of five. The choice will normally include narrative descriptive, argumentative, discussion and factual topics. The main criteria by which the composition will be marked are as follows

- A. the quality of the language employed, the range and appropriateness of vocabulary and sentence structure the correctness of grammatical construction, punctuation and spelling.
- B. The degrees to which candidate have been successfully in organising both the composition as a whole and the individual paragraphs.

1.2 APPLIED MATHEMATICS I

[Common to All Engineering Courses]

L T P
3 2/2 -

Rationale:

The study of mathematics is an important requirement for the understanding and development of any branch of engineering. The purpose of teaching mathematics to diploma engineering students is to impart them basic knowledge of mathematics which is needed for full understanding and study of engineering subjects.

S.N.	Units	Coverage Time
------	-------	---------------

		L	T	P
1.	Algebra-I	18	6	-
2.	Trigonometry	7	2	-
3.	Coordinate Geometry	15	5	-
4.	Differential Calculus-I	15	5	-
5.	Integral Calculus-I	20	7	-
		75	25	-

DETAILED CONTENTS:

1. ALGEBRA-I :

- 1.1 Series : AP and GP; Sum, nth term, Mean
- 1.2 Binomial theorem for positive, negative and fractional index (without proof). Application of Binomial theorem.
- 1.3 Determinants : Elementary properties of determinant of order 2 and 3, Multiplication system of algebraic equation, Consistency of equation, Crammer's rule
- 1.4 Vector algebra : Dot and Cross product, Scaler and vector triple product. Application to work done, Moment of a force, Plane geometry.

2. TRIGONOMETRY :

- 2.1 Relation between sides and angles of a triangle : Statement of various formulae showing relation ship between sides and angle of a triangle.
- 2.2 Complex number.

Complex numbers, Representation, Modulus and amplitud Demoivre theorem, its application in solving algebraic equations, Mod. function and its properties..

3. CO-ORDINATE GEOMETRY :

- 3.1 Standard form of curves and their simple properties -

Parabola $x^2=4ay$, $y^2=4ax$,

Ellipse $x^2 \over a^2 + y^2 \over b^2 = 1$

Hyperbola $x^2 \over a^2 - y^2 \over b^2 = 1$

$$\frac{---}{a^2} + \frac{---}{b^2} = 1$$

Tangent and normals

3.2 Straight lines, planes and spheres in space -

Distance between two points in space, direction crossing and direction ratios, Finding equation of a straight line, and shortest distance between two lines

Under different conditions equation of a plane $lx+my+nz=c$, relation between lines and planes, sphere $x^2 + y^2 + z^2 + 2gx + 2fy + 2wz=d$

4. DIFFERENTIAL CALCULUS - I :

4.1 Functions, limits, continuity, - functions and their graphs, range and domain, elementary methods of finding limits (right and left), elementary test for continuity and differentiability.

4.2 Methods of finding derivative, - Function of a function, Logarithmic differentiation, Differentiation of implicit functions, Higher order derivatives, Leibnitz theorem.

4.3 Special functions (Exponential, Logarithmic, Hyperbolic, Inverse circular and function), Definition, Graphs, range and Domain and Derivations of each of these functions.

4.4 Application - Finding Tangents, Normal, Points of Maxima/Minima, Increasing/Decreasing functions, sketching of some simple curves (without assumptions, question, not to be asked in the examination), Rate, Measure, velocity, Acceleration, Errors and approximation.

5. INTEGRAL CALCULUS - I :

5.1 Methods of Indefinite Integration :- Integration by substitution, Partial fraction and by parts, Integration of special function of 4.3.

5.2 Meaning and properties of definite integrals, Evaluation of definite integrals.

5.3 Application : Finding areas bounded by simple curves, Length of simple curves, Volume of solids of revolution, centre of mean of plane areas.

5.4 Simpsons and Trapezoidal Rule : their application in simple cases, Concept of error for simple function.

1.3 APPLIED PHYSICS

[Common to All Engineering Courses]

L T P
3 2/2 2

Rationale:

Engineering physics is a foundation Course. Its purpose is to develop proper understanding of physical phenomenon and scientific temper in the students. While teaching the subject, teachers should make maximum use of demonstrations to make the subject interesting to the students.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Topics	L	T	P
1.	Measurement	4	1	-
2.	Vector	3	1	-
3.	Force and Motion	4	1	-
4.	Dynamics of rigid body (Rotational Motion)	4	1	-
5.	Fluid Mechanics and Friction	4	1	-
6.	Work, Power and Energy	4	2	-
7.	Elasticity	2	1	-
8.	Simple Harmonic Motion	4	1	-
9.	Heat Transfer & Radiation	4	2	-
10.	Application of Sound Waves, Acoustics and Ultrasonics	6	2	-
11. A.	Optics	4	1	-
	B. Fiber Optics	4	1	-
12.	D.C. Circuits	4	1	-
13.	Dielectrics	4	2	-
14.	Magnetic Fields and Materials	4	2	-
15.	Semi Conductor Physics	5	1	-
16.	Nuclear Physics	4	2	-
17.	Laser & its Application	4	1	-
18.	Non-conventional energy sources	3	1	-

75 25 50

DETAILED CONTENTS:

1. Measurement
 - a) Units and Dimensions

Fundamental and derived units :

S.I. Units & Dimensions of physical quantities, Dimensional formula and dimensional equation. Principle of homogeneity of dimensions and applications of homogeneity principle to:

- i) Checking the correctness of physical equations,

- ii) Deriving relations among various physical quantities,
- iii) Conversion of numerical values of physical quantities from one system of units into another. Limitations of dimensional analysis.

b. Errors in measurements, accuracy and precision, random and systematic errors, estimation of probable errors in the results of measurement (Combination of errors in addition, subtraction, multiplication and powers). Significant figures, and order of accuracy in respect to instruments, Standard deviation, Variance.

2. Vector :

Scalar and vector quantities; Addition, Subtraction, Resolution of vector- Cartesian components of vector, Scalar and vector product of two vector.

3. Force and Motion

Parabolic motion, projectiles thrown horizontally and at an angle. Problems on time of flight, horizontal range, and maximum horizontal range. Central forces. Circular motion, angular velocity, angular acceleration and centripetal acceleration. Relationship between linear and angular velocity and acceleration. Centripetal and centrifugal forces. Practical applications of centripetal forces. Principle of centrifuge. Gravitational force, Motion of satellites, Kepler's laws, Escape velocity, Geo-stationary satellite, Concept of Black holes, Jet propulsion theory, Motion of Multi-stage Rocket, SLV, PSLV and GSLV Rockets.

4. Dynamics of Rigid Body (Rotational Motion)

Rigid body, Rotational motion, Moment of inertia, Theorems (Perpendicular and Parallel axis) of moment of inertia (Statement). Expression of M.I. of regular bodies, Radius of gyration, angular momentum, Conservation of angular momentum, Torque, Rotational kinetic energy. Rolling down the slant planes.

5. Fluid Mechanics & Friction

Surface tension, Capillaries, Equation of continuity ($A_1V_1 = A_2V_2$), Bernoulli's theorem, stream line and Turbulent flow, Reynold's number.

Introduction, Physical significance of friction, Advantage

and disadvantage of friction and its role in every day life. Static and dynamic frictional forces. Coefficients of static and dynamic friction and their measurements. Viscosity, coeff. of viscosity, & its determination by Stoke's method.

6. Work, Power and Energy

Work done by force on bodies moving on horizontal and inclined planes in the presence of frictional forces. Concept of power and its units. Calculation of power (simple cases). Concept of kinetic and potential energy, various forms of energy, Conservation of energy. Force constant of spring, potential energy of a stretched spring.

7. Elasticity

Elasticity, stress and strain. Hooke's law, elastic limit. Yielding point and breaking point. Modulus of elasticity Young's modulus, bulk modulus and modulus of rigidity, Poisson ratio, Resilience.

8. Simple Harmonic Motion

Periodic Motion, characteristics of simple harmonic motion; equation of S.H.M. and determination of velocity and acceleration. Graphical representation. Spring-mass system. Simple pendulum. Derivation of their periodic time. Energy conservation in S.H.M. Definition of free, forced, undamped and damped vibrations, Resonance and its sharpness, Q-factor.

9. Heat Transfer and Radiation

Modes of heat transfer, coefficient of thermal conductivity and its determination by (i) Searle's method for good conductors, and (ii) Lee's method for poor conductors. Conduction of heat through compound media, Conduction and convection, Radial flow of heat, Blackbody radiation, Stefan's law, Wein's displacement and Raleigh-Jeans laws, Planck's Law.

10. Application of Sound Waves

Acoustics

Standing waves, Closed and Open organ pipes, Resonance, End-correction. Definition of pitch, loudness, quality and intensity of sound waves. Echo and reverberation and reverberation time. Sabine's formula. Control of reverberation time (problems on reverberation time).

Accoustics of building defects and remedy.

Ultra-Sonic :

Generation, Magnetostriiction, Piezoelectric effect, Application in new technology

11.A Optics

Quantum nature of light, Coherence (Spatial and temporal), Duality of wave and particle, Concept of Interference, Biprism, Fraunhofer single and N-slit diffraction, Grating, Resolving and dispersive power, Elementary concept of polarisation.

B. Fibre Optics :

Critical angle, Total internal reflection, Principle of fibre optics, Optical fibre, Pulse dispersion in step-index fibres, Graded index fibre, Single mode fibre, Optical sensor.

12. D.C. Circuits

Principle of Wheat Stone bridge and application of this principle in measurement of resistance (Meter bridge and Post Office Box); potentiometer, Kirchoff's Law and their simple application. Principle of Carey-Foster's bridge. Electric potential, potential energy, Energy of a charged capacitor. Fleming left hand rule, torque on a current loop, Moving coil, Galvano meter. Charging/discharging of capacitors, Ballistic galvanometer, its charge sensitivity and Current sensitivity.

13. Dielectrics :

Electric dipole; effect of electric field on dielectrics, polarisation.

14. Magnetic Fields & Materials :

Dia, Para and Ferro-magnetism, Ferrites, Hysteresis, Methods of plotting, Hysteresis curve of a ferro magnetic materials and their uses, Magnetic circuits, Energy stored in magnetic fields, Basic idea of super conductivity, Meissner's effect, Applications.

15. Semiconductor Physics

Energy bands in soldis, classification of solids into conductors, insulators and semiconductors on the basis of

energy band structure. Intrinsic and extrinsic semiconductors, Electrons and holes as charge carriers in semiconductors, Effect of temperature in conduction in semiconductors, P-type and N-type semiconductors, P-N junction formation, barrier voltage, Forward and reverse biasing of a junction diode, P-N junction device characteristics, Formation of transistor, transistor-action, Majority and Minority charge carriers, Base, emitter and collector currents and their relationship LED's, Photoelectric effect and photo devices.

16. Nuclear physics

Radioactivity, Nuclear stability, Radioactive emmission, radiation damage, Nuclear fission and fusion, Nuclear reactors (PHWR-type and fast breeder) and their application, Mass-energy relation, Automatic mass unit, Mass defect and binding energy.

17. Lasers and its Applications

Absorbtion and Emission of energy by atom, Spontaneous and Stimulated Emission, Einstein's co-efficients, Poluation inversion, Main component of laser and types of laser- Ruby Laser, He-Ne and Semi-conductor laser and their applications. Principles of Holography, Introduction to MASER.

18. Non-conventional energy sources:

- (a) Wind energy : Introduction, scope and significance, measurement of wind velocity by anemometer, general principle of wind mill, Indian wind energy programme.
- (b) Solar energy: Solar radiation and potentiality of solar radiation in India, unit of solar radiation, Solar constant measurement of solar radiation by pyrometer, and by Insolation meter (suryamapi) uses of solar energy: Solar Cooker, solar water heater, solar photovoltaic cells, solar energy collector, Solar PV plants in India, Modern applications in technology.

PHYSICS LAB

Note: Any ten experiments are to be performed.

1. Determination of coefficient of friction on a horizontal plane.
2. Determination of 'Y' (Young's Modulus) by Searle's Method.
3. Determination of 'g' by plotting a graph T^2 verses l and using the formula $g=4n^2/\text{Slope of the graph line}$
4. Determination of Spring constant.
5. Determination of viscosity coefficient of a lubricant by Stoke's law.
6. Determination of 'k' for good conductor (Searle's Method).
7. Determination of frequency of AC mains by melde's methods (Transverse and Longitudinal Mode)
8. Determination of velocity of sound by resonance tube.
9. Determination of E_1/E_2 by potentio meter.
10. Determination of specific resistance by Carry Foster bridge.
11. Determination of resistivity by P.O.Box.
12. Verification of Kirchoff's Law.
13. To observe Characteristics of p-n Junction diode on oscilloscope.
14. To measure instantaneous and average wind velocity by indicating cup type anemometer/hand held anemometer.
15. To measure solar intensity (determine solar constant) with the help of Insolation meter (Suryamapi).
16. Demonstration of He-Ne laser (Interferometer)
17. Determination of internal resistance by potentiometer.

NOTE :

Students should be asked to plot a graph in experiments (where possible) and graph should be used for calculation of results. Results should be given in significant figures only.

1.4 APPLIED CHEMISTRY

[Common to All Engineering Courses]

L T P
3 - -

Rationale:

Engineering Chemistry has profound and deep relationship with the industrial and environmental technology. This curriculum intends to impart technical knowledge alongwith productive practice to the students of the diploma engineering. The teachers are expected to guide the students in the classroom and the laboratories according to the curriculum by demonstrations and by showing relevant materials and equipments to inculcate interests in learning among students.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Topics	L	T	P
1.	Atomic Structure	4	-	-
2	Chemical Bonding	6	-	-
3.	Classification of Elements	3	-	-
4.	Instrumental Methods	4	-	-
5.	Electro Chemistry	6	-	-
6.	Chemical Kinetics	4	-	-
7.	Catalysis	3	-	-
8.	Solid State	3	-	-
9.	Colloids	3	-	-
10.	Lubricants	3	-	-
11.	Environmental Pollution and Control	3	-	-
12.	Water Treatment	5	-	-
13.	Corrosion	3	-	-
14.	Fuels	3	-	-
15.	Glass and Ceramics	3	-	-
16.	Streoochemistry of Organic Compounds	4	-	-
17.	Organic Reactions	6	-	-
18.	Organic Materials	9	-	-
-----				75 - -

DETAILED CONTENTS:

1. ATOMIC STRUCTURE :

Basic concept of atomic structure, Matter wave concept, Schrodinger wave equation, Quantum number, Haisenberg's Uncertainty Principle, Shaples of orbitals.

2. CHEMICAL BONDING :

Overview of basic concept, Hydrogen bonding, Valence bond theory, Hybridisation, VSEPR theory, Molecular orbital

theory, Co-ordination bond, Crystal field theory for tetrahedral carbon.

3. CLASSIFICATION OF ELEMENTS :

Modern classification of elements (s,p,d and f block elements), Periodic properties : Ionisation potential, electro negativity, Electron affinity, Born-Haber cycle.

4. INSTRUMENTAL METHODS :

UV-visible, IR and NMR spectroscopy, Basic principles, Beer-Lamberts Law and Application of spectroscopy.

5. ELECTRO CHEMISTRY :

Arrhenius Theory of electrolytic dissociation, Transport number, Electrolytic conductance, Ostwald dilution law. Concept of Acid and bases : Bronsted, Arrhenius and Lewis theory. Concept of pH and its measurement by pH meter. Buffer solutions, Indicators, Solubility product, Common ion effect with their application, Redox reactions, Electrode potential (Nernst Equation), Electro-chemical cell (Galvanic and Electrolytic). EMF of a cell and free energy change. Standard electrode potential, Electro chemical series and its application.

Concentration cells, reference electrodes (Hydrogen electrode) cells - Primary, Secondary and Fuel cell, LaClanche's or dry cell, Acid storage cell (Lead accumulator) and Alkali storage cell (Edison accumulator), Fuel cell, Solar cell (Photovoltaic cell), Numerical problems based on topics.

6. CHEMICAL KINETICS :

Introduction, order and molecularity of reaction. Activation energy, Rate loss, rate constants, 1st order reactions and 2nd order reactions.

7. CATALYSIS :

Definition Characteristics of catalytic reactions, Catalytic promoters and poison, Autocatalysis and Negative catalysis, Activation energy, Theory of catalysis, Application

8. SOLID STATE :

Types of solids (Amorphous and Crystalline), Classification

(Molecular, Ionic, Covalent, Metallic), Band theory of solids (Conductors, Semiconductors and Insulators), types of Crystals, FCC, BCC, Crystal imperfection.

9. COLLOIDAL STATE OF MATTER :

Concept of colloidal and its types, Different system of colloids, Dispersed phase and dispersion medium. Methods of preparation of colloidal solutions, Dialysis and electrodialysis. Properties of colloidal solution with special reference to absorption, Brownian Movement, tyndal effect, Electro phoresis and coagulation. relative stability of hydrophilic and hydrophobic colloids. Protection and protective colloids. Emulsion, Types, preparation, properties

and uses. Application of colloids chemistry in different industries.

10. LUBRICANTS :

Definition, classification, Necessity and various kinds of lubricants. Function and mechanism of action of lubricants and examples. Properties of lubricants, Importance of additive compounds in lubricants, Synthetic lubricants and cutting fluids. Industrial application, its function in bearing.

11. ENVIRONMENTAL POLLUTION AND ITS CONTROL :

Concept and various types of environmental pollution with special reference to air pollution and water pollution. General measures to control environmental pollution. depletion of Ozone layer, Green house effect, Acid rain, Smog formation, Chemical and photochemical reaction, Various species in atmosphere. Specific industrial pollution like Euro-I and Euro-II.

12. WATER TREATMENT :

Concept of hard and soft water, Hardness of water, Its limits and determination of hardness of water by EDTA method. Softening methods (Only Sod lime, Zeolite and Ion exchange resin process). Disadvantage of hard water in different industries, Boiler feed water boiler scale formation, Corrosion, Caustic embrittlement, primming and foaming.

Characteristics imparted by various impurities or contaminants such as colour, odour, taste and sediments and their analysis.

Analysis of Water :

- A. Estimation of chlorides in water.
- B. Determination of dissolved oxygen.

Disinfecting of Water :

By Chloramic, Ozone and Chlorination with its mechanism, Advantage and disadvantage of chlorination, Break point chlorination (Free residual chlorination). Industrial waste and sewage, Municipality waste water treatment, Definition of BOD and COD. Recycling of water-Theory and Process. Numerical problems based on topics.

13. CORROSION :

Concept of metallic corrosion, Types of corrosion and factors affecting the corrosion rate, Chemical and electrochemical theory of corrosion, Oxide film formation and its characteristics, tarnishing fogging and rusting, Prevention of corrosion by various methods.

14. FUELS :

Definition of fuel, its classification and their

composition, Calorific value and determination of calorific value of solid and liquid fuels by Bomb calorimeter by Dulong's formula.

Liquid fuel - Petroleum and its refining, distillate of petroleum (Kerosene oil, Diesel and Petrol), Benzol and Power alcohol.

Knocking, Anti-knocking agents, Octane number and Cetane number.

Cracking and its type, Gasolining from hydrogenation of coal (Bergius process and Fischer tropsch's process)

Gaseous Fuel - Coal gas, Oil gas, Water gas, Producer gas, Bio gas, LPG, CNG and Solar energy

Numerical Problems based on topics

15. GLASS AND CERAMICS :

Concept of glass and its constituents, Classification and uses of different glass, Elementary idea of manufacturing process of glass. Introduction to ceramics materials, Its constituent. Industrial application of glass and ceramic.

16. STEREOCHEMISTRY OF ORGANIC COMPOUND:

- Isomerism
- Types of isomerism
 - 1. Structural isomerism
 - 2. Stereoisomerism (a) Geometrical (b) Optical
- Definition of chiral, achiral stereogenic centre, plane of symmetry.
- Types of stereoisomers-
 - 1. Conformers or Rotamers (Only ethanes)
 - 2. Configurational isomers
 - a. Enantiomers
 - b. Diastereoisomers

17. ORGANIC REACTIONS :

1. Fundamental aspects -

- A. Regents electrophiles and nucleophiles
- B. Reaction Intermediates
 - i. Free radical
 - ii. Carbocation
 - iii. Carbanion
- C. Various effects of substituents - Inductive, Mesomeric, Electromeric.

2.A. Mechanism of addition reaction (Markonicove's Rule, Cyanohydrin and Peroxide effect),

B. Mechanism of Substitution reactions (Nucleophilic-hydrolysis of alkyl halide, electrophilic substitution halogenation, Sulphonation, Nitration and Friedel-Craft reaction.

C. Mechanism of Elimination reaction - Dehydration of primary alcohol, Dehydrohalogenation of primary alkyl halide.

18. ORGANIC MATERIALS :

A. POLYMERS :

- 1. Introduction to basic terms used in polymer chemistry and technology. Monomers, Average degree of polymerisation, Average molecular weight, Polymers, Polymerisation.
- 2. Characteristics of Polymers and their classification

- A. Addition polymers and their industrial application- Polystyrene, PVA, PVC, PAN, PMMA, Buna-S, Buna-N, Teflon.
- B. Condensation polymer and their industrial application : Nylon 6, Nylon 6,6, Bakelite, Melamine formaldehyde, Urea formaldehyde, Terylene or Decron, Polyurethanes.
- 3. Free radical polymerisation (Mechanism)
- 4. General idea of Bio polymers
- 5. Brief idea of bio degradable polymers.
- 6. Inorganic polymers - Silicones
- B. SOAPS AND DETERGENTS :
- 1. Introduction - A. Lipids, B. Fats and Oils
- 2. Saponification of fats and oils , Manufacturing of soap.
- 3. Synthetic detergents, types of detergents and its manufacturing.
- C. EXPLOSIVES: TNT, RDX, Dynamite.
- E. Paint and Varnish
- F. Adhesives

1.5 ELECTRICAL ENGINEERING-I

(Common With Diploma In Electronics Engineering, Instrumentation Engineering and Computer Science & Engineering)

L	T	P
3	-	2

RATIONALE

Electrical energy is most convenient neat and clean source of energy for industrial applications. The student is supposed to possess basic knowledge of electrical engineering materials such as conducting, non conducting, insulating, magnetic, semi conductor and some special purpose materials. Fundamental knowledge of electrostatics, electromagnetism will be helpful in understanding the performance of D.C. and A.C. circuits. To face the routine problems of world of work chapters on batteries, transients and harmonics have also been added.

TOPIC WISE DISTRIBUTION OF PERIODS

Sr. No.	Units	Coverage Time
---------	-------	---------------

		L	T	P
1.	Classification	3	-	-
2.	Conducting Materials	8	-	-
3.	Insulating Materials	8	-	-
4.	Magnetic Materials	6	-	-
5.	Semi Conductor & Special Purpose Materials	6	-	-
6.	D. C. Circuits	6	-	-
7.	Electrostatics	8	-	-
8.	Electromagnetism	8	-	-
9.	A. C. Theory	8	-	-
10.	Batteries	6	-	-
11.	Transients & Harmonics	8	-	-
Total		75	-	50

DETAILED CONTENTS

1. CLASSIFICATION:

Classification of materials into Conducting materials, Insulating materials, Semi-conducting materials with reference to their atomic structure.

1.1 Conducting Materials:

- A. Resistivity and factors affecting resistivity such as temperature, alloying and mechanical stressing.
- B. Classification of conducting materials into low resistivity and high resistivity materials. Some examples of each and their typical applications.

1.2 Insulating Materials:

A. Electrical Properties:

Volume resistivity, Surface resistance, Dielectric loss, Dielectric strength (Break down voltage) and Dielectric constant.

B. Chemical Properties:

Solubility, Chemical resistance, Weather ability.

C. Physical Properties:

Hygroscopicity, tensile and Compressive strength, Abrassive resistance, Brittleness.

D. Thermal Properties:

Heat resistance, classification according to permissible temperature rise, Effect of electrical overloading on the life of an electrical appliance.

E. Plastic Insulating Materials:

Classification into thermoplastic and thermosetting catagories, examples of each and their typical applications.

1.3 MAGNETIC MATERIALS:

- A. Ferromagnetism, domains, permeability, hysteresis loop- (including coercive force and residual magnetism) and magnetic saturation.
- B. Soft and Hard magnetic materials, their examples and typical applications.

1.4 SEMI CONDUCTOR AND SPECIAL PURPOSE MATERIALS:

N-type and P-type materials, application of semi-conductor materials, materials used in transistor and I.C. manufacture.

1.5 D.C. CIRCUITS:

- (i) Ohm's law, resistivity, effect of temperature on resistances, heating effect of electric current, conversion of mechanical units into electrical units.
- (ii) Kirchoff's laws, application of Kirchoff's laws to solve, simple d.c. circuits.
- (iii) Thevenin's theorem, maximum power transfer theorem, Norton's theorem and super position theorem, simple numerical problems.

1.6 ELECTROSTATICS:

- (i) Capacitance and capacitor, definition, various types.
- (ii) Charging and discharging of a capacitor, growth and decay of current in a capacitive circuit.
- (iii) Energy stored in a capacitor.

- (iv) Capacitance in terms of dimensions of parallel plate capacitor.
- (v) Dielectric constant of material, Break down voltage of a capacitor.
- (vi) Series and parallel connection of capacitors.

1.7 ELECTRO MAGNETISM:

- (i) Concept of mmf, flux, reluctance and permeability.
- (ii) Energy stored in a magnetic field and an inductor.
- (iii) Solution of problems on magnetic circuits.
- (iv) Faraday's laws of electromagnetic induction, Lenz's law, Physical explanation of self and mutual inductance.
- (v) B-H curve, Hysterisis, Eddy currents elementary ideas and significance.
- (vi) Growth and decay of current in an inductive circuit.
- (vii) Force between two parallel current carrying conductors and its significance.
- (viii) Current carrying conductor in a magnetic field and its significance.

1.8 A.C. THEORY:

- (i) Concept of alternating voltage and current, difference between A.C and D.C..
- (ii) Generation of alternating voltage, equation of sinusoidal waveform.
- (iii) Definition and concept of cycle, frequency, Time period, amplitude, instantaneous value, average value, RMS value, peak value, form factor, Peak factor.
- (iv) Phase and phase difference, representation of alternating quantities by phasor, addition and subtraction of alternating quantities.

2.1 BATTERIES:

- (i) Construction of lead acid and nickel cadmium batteries.
- (ii) Charging and maintenance of batteries.

(iii) Rating of batteries.

(iv) Back up batteries (Lithium & Silver Oxide batteries)

(v) Shelf life of batteries.

2.2 TRANSIENTS & HARMONICS:

Introduction, Types of transients, Important differential equations, First and Second order equations, Transients in R-L series circuits (D.C.), Short circuit current, Time constant, Transients in R-L series circuits (A.C.), Transients in R-C series circuits (D.C.), Transients in R-C series circuits (A.C), Double energy transients.

Fundamental wave and harmonics, Different complex waveforms, General equation of complex wave, R.M.S. value of a complex wave, Power supplied by complex wave, Harmonics in single phase a.c. circuits, Selective resonance due to harmonics, Effect of harmonics on measurement of inductance and capacitance

ELECTRICAL ENGINEERING LAB:

LIST OF PRACTICALS:

1. Ohm's law verification.

2. To verify the laws of series and parallel connections of resistances i.e. to verify:-

(i) The total resistance in series connections.

$$RT=R_1+R_2+R_3\ldots\ldots$$

Where RT is the total resistance and R₁, R₂, R₃ etc. are the resistances connected in series.

(ii) The total resistance in parallel connections.

$$1/RT=1/R_1 + 1/R_2 + 1/R_3\ldots\ldots$$

Where RT is the total resistance and R₁, R₂, R₃ etc. are the resistances connected in parallel. Also to conclude that the total resistance value of a parallel circuit is less than the any individual resistance.

3. To verify Kirchoff's following laws:-

(i) The algebraic sum of the currents at a junction is zero.

(ii) The algebraic sum of the e.m.f. in any closed circuit is equal to the algebraic sum of IR products (drops) in that circuit.

4. To measure the resistance of an ammeter and a voltmeter and to conclude that ammeter has very low resistance whereas voltmeter has very high resistance.
5. To verify Thevenin's and maximum power transfer theorems.
6. To find the ratio of inductance values of a coil having air core and iron core respectively and thus see that by the introduction of a magnetic material inside the coil, the inductance value of the coil is substantially increased.
7. To verify the relation:-

$$CT = (C1 * C2) / (C1 + C2)$$

and

$$CT = C1 + C2$$

For two capacitors, connected in series and parallel respectively.

8. To test a battery for charged and discharged conditions and to make connections for its charging.
9. To show that the range of an ammeter (d.c. and a.c.) and a voltmeter (d.c. and a.c.) can be extended with the use of shunts and multiplier.
10. To convert the given galvanometer into a voltmeter and an ammeter.

1.6 ENGINEERING MECHANICS AND MATERIALS

(Common With Electronics Engg & Instrumentation & Control Engg. & Computer Science & Engineering)

L	T	P
3	-	-

RATIONALE

TOPIC WISE DISTRIBUTION OF PERIODS

SL.No.	Topic	L	T	P
--------	-------	---	---	---

1. Introduction	5	-
2. Force Analysis	12	-
3. General condition of equilibrium	12	-
4. Stress & Strain	12	-
5. Beam & Trusses	12	-
6. Materials & Concepts Use In Electronics	22	-

Total	75	-	-
-------	----	---	---

DETAILED CONTENTS

1. Introduction:

Mechanics and its utility. Concept of scalar and vector quantities. Effect of a force. Tension & compression. Rigid body. Principle of physical independence of force. Principle of transmissibility of a force.

2. Forces Analysis:

Concept of coplaner and non-coplaner forces including parallel forces. Concurrent and non-concurrent forces. Resultant force. Equilibrium of forces. Law of parallelogram of forces. Law of triangle of forces and its converse. Law of polygon of forces. Solution of simple engineering problems by analytical and graphical methods such as simple wall crane, jib crane and other structures. Determination of resultant of any number of forces in one plane acting upon a particle, conditions of equilibrium of coplaner concurrent force system.

3. General Condition of Equilibrium:

General condition of equilibrium of a rigid body under the action of coplaner forces, statement of force law of equilibrium, moment law of equilibrium, application of above on body.

4. Stresses and strains:

Concept of stress and strain. Concept of various types of stresses and strains. Definitions of tension, compression, shear, bending, torsion. Concept of volumetric and lateral strains, Poisson's ratio. Mechanical properties of MS, SS, CI Al and etc.

5. Beams & Trusses:

Definition of statically determinate and indeterminate trusses. Types of supports. Concept of tie & strut, calculation of reaction at the support of cantilever and simply supported beams and trusses. (simple problems only)

6.A. MATERIALS & CONCEPT USED IN ELECTRONICS :

Soldering materials - Type, chemical composition and properties, Soldering alloys - Tin lead, Tin antimony, Tin silver, Lead silver, Tin zinc, Different types of flux and their properties, Properties of plastics materials, Epoxy materials for PCB (Single and multi layer board), Emulsion parameters, Film emulsion, Type of laminates (Phenolic, Epoxy, Polyester, Silicon, Melamine, Polyimide), Properties of copper clad laminates, Material (Filler, Resin, Copper Foil) Photo printing basic for double side PCB, Photo resin materials coating process materials, Screen printing and its materials Etching agent, Film processing and used materials.

(B) Soldering & Brazing:

For black Galvanised and Tincoated Iron sheet, brass and copper sheets only.

- (1) Its concept, comparison with welding as joining method and classification, electric soldering and forge soldering.
- (2) Soldering operation- edge preparation of joints, Pickling and degreasing, Fluxing, Tinning and Soldering. Wave soldering, solder mask, Dip soldering, Drag soldering,
- (3) Materials Used-Common fluxes, soft and hard solder, solder wire (Plain and Resin core) and sticks, spelters and their specifications and description (For Identification Only), forge soldering bits.
- (4) Electric soldering iron, other soldering tools.
- (5) Common defects likely to occurs during and after soldering.
- (6) Safety of Personnel, Equipment & Tools to be observed.

(Common to Computer Science & Engineering, Post Graduate Diploma in Computer Application).

L T P
4 2 -

Rationale

Computers have become an integral part of modern industrial atmosphere. Every technician is supposed to be aware of the application of computers. A student having knowledge of popular software and computer peripherals will prove useful to accept any challenge in day today working.

TOPIC WISE DISTRIBUTION OF PERIODS

L T P
3 1 -

Sl.No.	Units	Coverage			Time
		L	T	P	
1.	Introduction of Information Technology	20	10	-	
2.	Component of Information technology	15	6	-	
3.	Data Representation	20	10	-	
4.	Emerging Trends	15	10	-	
5.	Components of Computers	15	6	-	
6.	Mobile Computing	15	8	-	
		100	50	-	

1. Introduction of Information Technology

Definition Of Information, difference between data and information, need for information, qualities of information, value of information, categories of information, level of Information. Use of Information Technology in Office Automation, Computers & Its Types.

2. Components of Information Technology:

Components Hardware & its Functioning - Input Unit, Control Processing Unit, Output Unit, Types of Input Units & Output Units Computer Software - Types of Software, System Software, Application Software.

3. Data Representation :

Binary Number System, Conversion from Decimal to Binary, Conversion from Binary to Decimal, Hexadecimal and Octal Decimal No. System, Memory Addressing and its Importance, ASCII and EBCDIC coding System.

4. Emerging Trends in Information Technology -

Concepts of Networking and Local Area Networking, Advanced Input/Output Devices and their use(MICR,OCR,Scanners, Light

pen, Plotters, Microfilms, Rewritable, CD-ROMS, Multimedia,

Video Conferencing, Tele Conferencing .

5. Components of computer

Types of PC e.g. Desktops, Laptops, Notebooks, Palmtops, Memory System of a PC, Primary Memory, RAM (Random Access Memory), ROM (read only Memory), Secondary Memory, Types of Secondary Storage, Access Mechanism of storage Devices, PC setup and ROM-BIOS, Elementary Troubleshooting.

6. MOBILE COMPUTING :

Introduction, Personnel Communication Services (PCS), Global System Mobile Communication (GSM), GPRS, Mobile Data Communication, WAP, 3G Mobile service.

1.8 OPERATING SYSTEM

(Common to Computer Science & Engineering)

L	T	P
4	—	4

Rationale :

For effective use of computer, the knowledge about computer operating system, Windows, DOS, UNIX, C.P.U. share prove useful for a technician working in a computer centre.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Introduction	10	—	—
2.	File System	15	—	—
3.	C.P.U. & Disk, Drum scheduling	25	—	—
4.	Memory Management	25	—	—
5.	Features WINDOWS	25	—	—
		100	—	100

DETAILED CONTENTS

1. Introduction

What is O.S., Multiprogramming, Time Sharing, Real Time System, Multitasking.

2. File System

File concepts, Access methods, Allocation methods, Directory System.

3. C.P.U. & Disk Scheduling.

Scheduling concepts, Scheduling Algorithm, Multiprocessor, FCFS Scheduling, Shortest Seek-time first, Scan.

4. Memory Management

Swapping, Multiple partitions, Paging, Segmentation, Demand paging, page replacement.

5. Features of Windows

Types of Window & differences, GUI, What is interface, Windowing, windows environment, menus of Dialog boxes, Concepts of Icon, Functions of Programms, Documents, Setting, Run Command.

List Of Practicals

1. Excercise on Widows 98/2000/VISTA.

1.9 FUNDAMENTALS OF ELECTRONICS DEVICES.
(Common With Computer Science & Engineering)

Rationale:

Knowledge of Electronics Devices is quite essential for a students of diploma Computer Engineering. The knowledge of concepts, constructions & working of these devices, will help students in understanding the working and behaviour of different hardware constituents of computer.

L T P
3 2/2 4

TOPIC WISE DISTRIBUTION OF PERIODS

Sr. No.	Units	Coverage Time		
		L	T	P
1.	Introduction	3	1	-

2.	Semiconductor Physics	8	3	-
3.	Semiconductor Diodes	8	3	-
4.	Transistor	8	2	-
5.	Transistor as an amplifier	12	5	-
6.	Concepts of Feedback	8	3	-
7.	Transistor as a Switch	8	2	-
8.	Multivibrators	6	2	-
9.	Multivibrators as a Memory Elements	6	2	-
10.	Integrated Circuits	8	2	-
		Total	75	25 100

1. INTRODUCTION:

- 1.1 Application of electronics in different fields.
- 1.2 Electronic devices in computer system. e.g. power supply, micro processor and other ICs, amplifiers, clock & other signal generators.
- 1.3 Advancements in electronics technology and its impact on computers size reduction, capacity expansion, increase in reliability, cost reduction)

2. SEMICONDUCTOR PHYSICS:

- 2.1 Analyzing conductivity of elements, Types of conductors.
- 2.2 Pure(Intrinsic) semiconductors-Silicon, Germanium:Thermal Generation(formation of charge carrier-Positive & Negative charge carriers i.e. electron-hole pair), Recombination, Displacement of hole, mobility of free electron and moving hole, effect of variation in temperature, behavior of intrinsic semiconductors at 0 K.
- 2.3 Doping the Intrinsic semiconductors with a pentavalent/tri-valent element(i.e. doner and accepter type impurity) in small amount, effect of doping on strength of charge carriers(formation of immobile ions and majority and

minority carriers), P,N Junction.

- 2.4 Effect of doping a crystal parity 'P' type and parity: concepts of diffusion & drift, formation of depletion layer(potential barrier)i.e. formation of P-N Junction.

3. SEMICONDUCTORS DIODES:

- 3.1 Effect of applying electrical potential across a P-N Junction in the following ways:

- (a) Positive of the source to 'P' type terminal & Negative to the 'N' type terminal
- (b) Positive of the source to 'N' type terminal & Negative to the 'P' type terminal.

3.2 Analyzing the flow of current in both the directions, cause of the difference in magnitudes of current in the two directions.

3.3 Characteristics of a P-N Junction diode in forward/reverse biasing.

3.4 Concepts of unidirectional and bi-directional flow of currents. Effect of putting in diode in series with a load connected across an ac source.

3.5 Half wave rectifier, Full wave rectifier9 using C.T. transformer, using bridge circuits)

3.6 Special purpose diodes:Zener diode, Vractor diode, Photo Diode, Light emitting Diode (LED), their characteristics and uses.

4. TRANSISTOR:

4.1 Growing a Crystal having two P-N Junction back to back (i.e.PNP & NPN); Junction transistor structure; action of transistor in FF,RR,FR and RF biasing; working of a transistor; relation between different currents in a transistor;

4.2 Various configurations of transistor (CB,CE,CC); relation between Transistor action in three configuration; Comparison between the three configuration of transistor;

4.3 Input and Output characteristics of a transistor;

4.4 Field - effect transistor (JFET, IGFET,MOSFET);

5. TRANSISTOR AS AN AMPLIFIER:

5.1 Transistor biasing: DC Operating: need of biasing & bias stabilization in a transistor circuit; various biasing circuits(Fixed, Collector to base, emitter, and potential divider.);

5.2 DC and AC load lines in a typical CE amplifier circuit;

5.3 Need of using multi- stages; how to couple two stages ;

various coupling arrangements(R-C coupling,Transformer

coupling, Direct coupling):

5.4 Effect of coupling arrangement on the frequency response of a two stage amplifier; frequency response curve of a RC coupled amplifier; a transformer coupled amplifier; band width of an amplifier.

6. OPERATIONAL AMPLIFIERS:

6.1 Specifications of ideal operational amplifier and its block diagram.

6.2 Definition of inverting and noninverting inputs, differential voltage gain and input and output offset, voltage input offset current, input bias current, common mode rejection ratio (CMRR), power supply rejection ratio (PSRR) and slew rate.

6.3 Method of offset null adjustments, use of op.amp. as an inverter, scale changer, adder, subtractor, differential amplifier, buffer amplifier, differentiator, integrator, comparator, Schmitt Trigger, Generation of Square and Triangular Waveform, log and anti-log amplifiers, PLL and its application and IC power amplifier.

7. FEED BACK IN AMPLIFIER:

7.1 Concept of Feed back;

7.2 Types of feed back(Positive, Negative); different arrangement of feed back(series voltage, series- current, shunt -voltage, shunt current);

7.3 Voltage gain of feed back amplifier; ($A' = A/(a) + A$)

7.4 Analysis of Negative feed back arrangement on (Gain, Stability, Noise, Input/output impedances, Band width); Amplifier circuits with negative feed back;

7.5 Positive feed back; condition for infinite gain($AB=1$ in Positive feed back)

7.6 Oscillator as an infinite gain feed back.

8. TRANSISTOR AS A SWITCH:

8.1 Control action of base current on the collector current in a transistor circuit .

8.2 Large signal amplifier (input changing from cut-off to saturation).

8.3 Remote control of a relay - operated lamp employing amplifier .

8.4 Requirements of a transistor - switch .

9. MULTIVIBRATORS:

- 9.1 Regeneration: relaxation oscillators;
- 9.2 Simple astable MV circuit arrangement for its self starting;
- 9.3 Study and analysis of BI - STABLE MULTIVIBRATOR;
- 9.4 Study and analysis of mono stable multivibrator;
- 9.5 Triggering requirements;
- 9.6 Schmitt trigger circuit;

10. INTEGRATED CIRCUITS:

- 10.1 Introduction;
- 10.2 Manufacturing process;
- 10.3 SSI, MSI, LSI, VLSI, ICs;
- 10.4 Linear and Digital ICs;
- 10.5 Switching and Gating ICs;
- 10.6 DTL, TTL, ICs;

LIST OF PRACTICALS

- 1. To Identify electronic devices and common passive components: such as Diodes (Rectifier, Zeners, Signal Diodes, Varacter diode, etc.); LED's; Transistors; ICs; Resistors, Capacitors, (Colour code for them); Inductors, Transformers.
- 2. To Plot characteristics (FB/RB) of Semiconductor rectifier diode.
- 3. To Plot characteristics (FB/RB) of a zener diode.
- 4. Observe the output wave of a Half wave rectifier circuit with/without shunt capacitor filter.
- 5. Observe the O/P wave of a full wave (C.T.) Rectifier circuit with/without Shunt capacitor filter.

6. Observe the O/P wave of a Bridge Rectifier circuit with/without shunt capacitor filter.
7. To Plot input/output characteristics of a Transistor in CB.
8. To Plot input/output characteristics of a Transistor in CE.
9. To Plot input/output characteristics of a FET.
10. To measure Voltage gain of a transistor amplifier at 1 KHz signal, at different load.
11. To measure over all Voltage gain of a 2 stage RC coupled transistor amplifier a 1 KHz signal.
12. To plot frequency response of a RC coupled amplifier at 1 KHz signal.
13. To measure input and output impedance of a negative feedback amplifier.
14. To fabricate a transistor switch and verify its working.
15. To observe the output of an Astable multivibrator.
16. To observe the output of a Bi-stable multivibrator.
17. To observe the output of an Monostable multivibrator.
18. Use OP-AMP as inverting and non-inverting amplifier, Use as Adder, Subtractor, Integrator and differentiator.

II YEAR

2.1 APPLIED MATHEMATICS II

[Common to All Engineering Courses]

L	T	P
3	1	-

Rationale :

The study of mathematics is an important requirement for the understanding and development of concepts of Engg. The purpose of teaching mathematics to the Diploma Engg. students is to give them basic foundation and understanding of mathematics so that they can use the same for the understanding of engineering subjects and their advancements.

Sl.No.	Units	Coverage Time
		L T P

1.	Matrices	15	5	-
2.	Ordinary Differential Equations	15	5	-
3.	Differential Calculus-II	15	5	-
4.	Integral Calculus-II	15	5	-
5.	Probability & Statistics	15	5	-
		75	25	-

DETAILED CONTENTS

1. MATRICES :

1.1 Algebra of Matrices, Inverse :

Addition, Multiplication of matrices, Null matrix and a unit matrix, Square matrix, Determinant of a matrix, Cofactors, Definition and Computation of inverse of a matrix.

1.2 Elementary Row/Column Transformation :

Meaning and use in computing inverse and rank of a matrix.

1.3 Linear Dependence, Rank of a Matrix :

Linear dependence/independence of vectors, Definition and computation of a rank of matrix. Computing rank through determinants, Elementary row transformation and through the concept of a set of independent vectors, Consistency of equations.

1.4 Types of Matrices :

Symmetric, Skew symmetric, Hermitian, Skew hermitian, Orthogonal, Unitary, diagonal and Triangular.

1.5 Eigen Pairs, Cayley-Hamilton Theorem :

Definition and evaluation of eigen values and eigen vectors of a matrix of order two and three, Cayley-Hamilton theorem (without Proof) and its verification, Use in finding inverse and powers of a matrix.

2. ORDINARY DIFFERENTIAL EQUATION :

2.1 Formation, Order, Degree, Types, Solution :

Formation of differential equations through physical, geometrical, mechanical and electrical considerations, Order, Degree and Meaning of solution of a differential equation, Linear, Nonlinear equation.

2.2 First Order Equations :

Variable separable, equations reducible to separable forms, Linear and Bernoulli form exact equation and their solutions.

2.3 Second Order Linear Equation :

Property of solution, Linear equation with constant coefficients, Cauchy type equation. Homogeneous and Non-homogeneous equations, equations reducible to linear form with constant coefficients.

2.4 Simple Applications :

LCR circuit, Motion under gravity, Newton's law of cooling, radioactive decay, Population growth, Force vibration of a mass point attached to spring with and without damping effect. Equivalence of electrical and mechanical system

3. DIFFERENTIAL CALCULUS-II :

3.1 Function of two variables, identification of surfaces in space

$$z = x^2 + y^2, \quad x^2 + y^2 = a^2, \quad x + y = 2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

3.2 Partial Derivatives :

Directional derivative, Gradient, Use of gradient f, Partial derivatives, Chain rule, Higher order derivatives, Eulens theorem for homogeneous functions, Jacobians.

3.3 Vector Calculus :

Vector function, derivatives, gradient, divergence and curl. Some identities among these. Five integrals, double and triple integral, surface integral, Green, Gauss and Stokes theorem and application

4. INTEGRAL CALCULUS - II

4.1 Laplace Transform :

Definition, Basic theorem and properties, Unit step and Periodic functions, Solution of ordinary differential equations.

4.2 Beta and Gamma Functions :

Definition, Use, Relation between the two, their use in evaluating integrals.

4.3 Fourier Series :

Fourier series of $f(n)$ - $n < x < n$, Odd and even function, Meaning of the sum of the series at various pairs.

5. PROBABILITY AND STATISTICS :

5.1 Probability :

Laws and Conditional probability

5.2 Distribution :

Discrete and continuous distribution.

5.3 Binomial Distribution :

Properties and application through problems.

5.4 Poisson Distribution :

Properties and application through problems

5.5 Normal Distribution :

Properties and applications through problems

5.6 Method of Least-square.

2.2 PROGRAMMING IN C & C++

(Common to Diploma In Information Technology, Post Graduate In Computer Application, Post Diploma In Information Technology)

L	T	P
3	1	4

Rationale :

For solution of different problems, C is a very powerful high level language. It is widely used in research

and engineering problems. A software technician must be aware of this language for working in computer environment.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Concept of Programming	10	5	
2.	Programming in C	30	15	-
3.	Classes & Objects	30	15	
4.	Programming in C++	30	15	
		100	25	100

DETAILED CONTENTS

1. CONCEPT OF PROGRAMMING:

Concept of Flowcharting, algorithm, programming, Structured Programming Various techniques of programming, Use of programming.

2. Programming in C:

Data Types, Operators and Expressions; Input & Output printf, scanf, library Control Statement: IF- ELSE, While, For, Do-While, Switch; Functions and modular programming; Scope of variables, parameter passing, recursion, block structure; preprocessor statements; pointers and arrays; structures and unions; File handling.

3. CLASSES & OBJECT:

What is a class, what is an object, constructors, types of object (external, automatic, static, Dynamic objects) Metaclass, role of meta class. Scope of classes, array of objects, objects as a function argument.

4. Programming in C++

What is object-orientation, area of object technology, C++, getting to grips with C++ (data types, escape sequence, characters, variables, operator, notation, Arrays, Function conditional statements, call by value, call by reference, Pointer : C++ memory map, dynamic allocation pointers, pointers with arrays, Structure, structure with arrays, passing, structure of function, Enumerated data types, Inheritance, polymorphism & Overloading.

List of Experiments

1. Exercises involving output and input format controls in Pascal.
2. Exercises involving control transfer statements in C & C++
3. Exercises with arrays & Pointers in C & C++.
4. Exercises with functions in C & C++.
5. Exercises with files in C & C++.

2.3 DATA COMMUNICATION AND COMPUTER NETWORKS

(Common To Information Technology)

L	T	P
3	2/2	-

Rationale :

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Data Communications	5	2	-
2.	Transmission Media	10	3	-
3.	Protocols and Architecture	10	3	-
4.	Data Link Control & Protocol	10	3	-
5.	Local Area Network	10	3	-
6.	Network Layer	10	3	-
7.	Transport Protocols	10	4	-
8.	Wide Area Networks	10	4	-
		75	25	-

DETAILED CONTENTS

1. DATA COMMUNICATION :

Data Transmission : Analog Transmission, Digital Transmission.

Data Encoding : Digital Data- digital signals, Digital Data - analog signals, Analog Data-Digital Signals, Analog Data-Analog Signals, Synchronous and Asynchronous Transfer.

2. TRANSMISSION MEDIA :

Twisted pair, Coaxial Cable, Optical Fibers, Wireless Transmission, Microwave, Radio Waves, Infrared.

3. PROTOCOLS AND ARCHITECTURE :

Protocols, OSI reference models, TCP/IP protocol suite.

4. DATA LINK CONTROL AND PROTOCOL :

Flow Control - Stop and Wait, Sliding window, Error Detection, Error Control, HDLC.

5. LOCAL AREA NETWORK :

LAN architecture, LAN topologies - BUS/Tree LAN, Ring LAN, Star LAN, Wireless LAN, Ethernet and Fast Ethernet (CSMS/CD), Token Ring and FDDI.

6. NETWORK LAYER :

Introduction, Routers, Routing Algorithms, Congestion control algorithm, Addressing, Internet working.

7. TRANSPORT PROTOCOLS :

Transport services, TCP, UDP.

8. WIDE AREA NETWORKS :

WAN, Circuit switching, Packet switching, Frame relay, ATM, ISDN.

(Common to Diploma In Information Technology, Post Graduate Diploma in Computer Application.)

L T P
3 - 4

Rationale :

The PC's are gaining their image as personal assistants to every individual in day today life. It is only because of the softwares like Electronic spread sheet, Data base and Word Star, Without these this image of the pc's is of no worth.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	MS Word	20	-	-
2.	MS Excel	20	-	-
3.	Power Point	20	-	-
4.	Corel Draw	15	-	-
		75	-	100

DETAILED CONTENTS

1. MS WORD PROCESSING:

File : Open, Close, Save and Find File, Print and Page Setup
Edit : Cut, Copy, Find, Replace
Insert: Page Insert, Page No., Symbole
Font : Paragraph, Tabs, Boder & Shading, Change Case
Tools : Spelling, Mail Merge
Table : Insert Table, Delete Cells, Merge Cell, Sort Text

2. MS Excel:

File : Open, Close, Save and Find File, Print and Page Setup
Edit : Cut, Copy, Find, Replace, Undo, Redo
Insert: Cell, Row, Worksheet, Chart
Format: Data, Sort, Filter, Form, Table

3. POWER POINT

File : New,Open,Close,Save as HTML,Pack and Go,Page setup,Send to ,Properties
Edit : Cut, Copy, Find, Replace, Undo, Redo,Duplicate.
View : Slide_Outline,Slide_sorter,Notepage,Slideshow,Master, Black & white slide,Toolbars,Ruler ,Guides
Insert : New slide,Duplicate slide,Picture,Text box,Movies & sound,Hyperlink.

Format : Font, Bullet, Alignment, Line spacing, Slide layout.

Tool : Power point, Presentation & conference, Expand slide, Macro, customise.
Slide show: View show, Rehearse timing, Narration, View on two screen, Active buttons, Preset Animation, Custom - animation, Slide transition.
Window : New window, Arrange icons, Fit to page, Cascade.

4. COREL DRAW :

Corel Group, Corel Photopaint, Corel Ventura, Corel Draw, Corel show and other packages.

MS-OFFICE

List Of Practicals

1. Creating, Editing, Modifying database file, Label, Report, Format & Query.
2. Write programme for small systems like Marksheets preparation, Payroll, Inventory Control, Accounting, etc.
3. Use all the features and utilities of MS Word.
4. Creating, Editing, Modifying Spread Sheet, Graph, Database.
5. Use of macros and printing of well formatted reports.
6. Selection of command using Windows.
7. Small projects of Power Point Presentation.
8. Small Projects of Corel Draw.

2.5 VISUAL BASIC.NET

(Common to Diploma In Information Technology, Post Graduate Diploma in Computer Application, Post Diploma in information Technology.)

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Fundamental of Visual BASIC	10	-	-
2.	Introduction to Visual Basic.NET	10	-	-
2.	Programming with Module & Procedure	10	-	-
3.	Program flow & Decision Making	15	-	-
4.	Array & Control Functions	15	-	-
5.	Designing Customs Menus	15	-	-
		75	-	100

DETAILED CONTENTS

1. FUNDAMENTAL OF VISUAL BASIC:-

Understanding Events, preparing to create the program, creating program user interface, Caption & name properties, attaching code to objects, properties for form appearance and behaviour, Control properties, Caption property, Enable property, Value property and Text property.

2. INTRODUCTION TO VISUAL BASIC.NET :

Introduction to .NET framework and the common language routine, Visual Basic integrated development environment, Visual Basic.NET Application

3. PROGRAMMING WITH MODULES & PROCEDURES :

Placing code in modules, understand the procedure, use standard code writing conventions, work with data types, variables.

4. PROGRAMME FLOW AND DECISION MAKING :

Unconditional branching, conditional testing and branching, looping.

5. ARRAYS & CONTROL FUNCTIONS:

Control arrays and sequential files, one dimensional and multi dimensional arrays. List box, combobox control, timer control, format control, data type conversion, input box functions, create message box.

6. DESIGNING CUSTOM MENUS :

- i) Understand the menu, editor, window, create menu

application, edit menu, polish the appearance of menus, code menu option.

ii) How to interact with ms access database with visual basic.net.

LIST OF PRACTICAL

1. Develop small software using visual basic and Visual Basic.NET (all commands).

2.6 MICROPROCESSORS AND APPLICATIONS

(Common with Electronics Engineerint, Instrumentation & Control Engineering and Computer Engineering)

L	T	P
3	-	3

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Over View of Microcomputer System	6	-	-
2.	Memory of A Microcomputer	12	-	-
3.	C.P.U. and Control	12	-	-
4.	Introduction To 8085 Microprocessor	12	-	-
5.	Architecture of 8086 Microprocessor	12	-	-
6.	Assembly Language Programming	12	-	-
7.	Basic I/O Interfacing	12	-	-
8.	Memory Interfacing	12	-	-
9.	Advance Microprocessor & Micro Controllers	12	-	-
		75	-	75

DETAILED CONTENTS

1. OVERVIEW OF MICROCOMPUTERS SYSTEM:

1.1 Functional block.

- (a) CPU.
- (b) Memory.
- (c) Input/Out devices (Key board, Floppy drive, Harddisk drive, Tape drive, VDU, Printer, Plotter).

1.2 Concept of programme and data memory.

- (a) Registers (general purpose).
- (b) external memory for storing data and results.

1.3 Data transfer between registers.

1.4 Concept of tristate bus.

1.5 Control on registers.

2. MEMORY OF A MICROCOMPUTER:

2.1 Concept of byte organised memory.

- (a) Address inputs.
- (b) Address space.

- (c) Data input/output.

2.2 Addressing and Address decoding.

- (a) Memory system organisation.
- (b) Partitioning of total memory space into small blocks.
- (c) Bus contention and how to avoid it.

2.3 Memory chips.

- (a) Types of ROM, RAM, EPROM, PROM.
- (b) Read/Write inputs.
- (c) Chip enable/select input.
- (d) Other control input/output signals.
 - Address latching.
 - Read output.
 - Address strobes.
- (f) Power supply inputs.

2.4 Extension of memory.

- In terms of word length and depth.

3. C P U & CONTROL:

3.1 General microprocessor architecture.

3.1 Instruction pointer and instruction register.

3.2 Instruction format.

- Machine and Mnemonics codes.
- Machine and Assembly language.

3.3 Instruction decoder and control action.

3.4 Use of Arithmetic Logic Unit.

- Accumulator.
- Temporary Register.
- Flag flip-flop to indicate overflow, underflow, zero result occurrence.

3.5 Timing and control circuit.

- Crystal and frequency range for CPU operation.
- Control bus to control peripherals.

4. INTRODUCTION OF 8085 MICROPROCESSOR:

Evolution of Microprocessor, Register Structure, ALU, BUS Organization, Timing and Control.

5. INTRODUCTION OF 8086 MICROPROCESSOR:

Internal organization of 8086, Bus Interface Unit, Execution Unit, Unit, register, Organization, Sequential Memory Organization, Bus Cycle.

6. ASSEMBLY LANGUAGE PROGRAMMING :

Addressing Modes, Data Transfer, Instructions, Arithmetic and Logic Instruction, Program Control Instructions (Jumps, Conditional Jumps, Subroutine Call) Loop and String Instructions, Assembler Directives.

7. BASIC I/O INTERFACING :

Programmed I/O, Interrupt Driven I/O, DMA, Parallel I/O (8255-PPI, Centronics Parallel Port), Serial I/O (8251/8250,

RS-232 Standard), 8259-Programmable Interrupt Controller, 8237-DMA Controller, 8253/8254-Programmable Timer/Counter, A/D and D/A conversion.

8. MEMORY INTERFACING :

Types of Memory, RAM and ROM Interfacing with Timing Considerations, DRAM Interfacing.

9. ADVANCE MICROPROCESSOR AND MICRO CONTROLLERS :

Pentium and Power PC

NOTE :

Study of Popular ICs Read/Write Chips-8155/8156, 2114, 2148, 2164. ROM Chips- 8355, 2716, 2732, 8755. Other support chips - 8279, 8257, 8275, 8205.

LIST OF BOOKS

1. Singh, B. P. - Advanced Microprocessor and Microcontrollers- New Age International.
2. Singh, B. P. - Microprocessor Interfacing and Application - New Age International.
3. Brey, Barry B. - INTEL Microprocessor - Prentic Hall (India)-4th Edition.
4. Liu and Gibson G.A. - Microcomputer System - The 8086/8088 Faimly-Prentice Hall (India) 2nd Edition.

MICROPROCESSORS AND APPLICATIONS LAB

List Of Practicals

1. Assembly language programming :- Programming of simple problems.
2. Simple programming problems using 8085 and 8086 microprocessor. Trainer kit to gain competence in the use of
 - (a) 8085 and 8086 Instruction set.
 - (b) Support chips of 8085 and 8086.

2.7 COMPUTER HARDWARE & MAINTENANCE

(Common to Post Graduate Diploma Computer Application)

L	T	P
3	-	3

Rationale :

Servicing of computer peripherals and system such as Key Board, Disk Drives, Printers, Power Supplies and different stages of the computer results in increasing efficiency and life of the computer centre. A technician having skills of servicing the above peripherals and systems will prove useful for a computer centre.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Topic 1	5	-	
2.	Topic 2	5	-	
3.	Topic 3	5	-	
4.	Topic 4	6	-	
5.	Topic 5	6	-	
6.	Topic 6	6	-	
7.	Topic 7	6	-	
8.	Topic 8	6	-	
9.	Topic 9	6	-	
10.	Topic 10	6	-	
11.	Topic 11	6	-	
12.	Topic 12	6	-	
13.	Topic 13	6	-	
		75	-	75

DETAILED CONTENTS

1. Component and peripheral devices, Connected with computer.
2. Mother Board : BUS, Mother board components, Battery, Connections on the Mother Board, Keeping CPU cool, Mother board trouble shooting.
3. Key Board : Switches, Keyboard organization, Key board type trouble shooting.

4. Mouse : Mouse type, Connecting Mouse, Trouble shooting Mouse.
5. HDD : Magnetic recording, Data Encoding Method, HDD feature, Head barking, HDD trouble shooting.
6. FDD : Type and working, Maintenance.
7. Printers : Image formation method, Printing mechanism, DMP, Ink Jet, Laser Printer. How printer works and Trouble shooting.

8. Network : Setting up N/W, Trouble Shooting N/W.
9. Make your own computer.
10. Software Installation, Windows and other S/w.
11. Boot Process
12. How to use Pen deive and other devices.
13. Power Supply : Operating charactersics, Types and maintenance.

HARDWARE MAINTENANCE

List Of Practicals

- (I) Study of devices on motherboard
- (II) Study of Key board & Keyboard decoder
- (III) Study of Video Adopter & display controllers
- (IV) Study of Floppy Drive, CD Drive and Hard Disk.
- (V) Study of Multifunction Input/Output controllers

2. Troubleshooting & repair of following equipment

- (I) Dot Matrix Printer, Laser, Inkjet Printer.
- (II) Digital Plotter
- (III) C. P. U.
- (IV) Disk Drive

3. Study and Trouble Shooting of

- (I) Network
- (II) Power Supplies.

2.8 ELECTRONIC INSTRUMENTS AND MEASUREMENTS

(Common with Instrumentation & Control Engineering and Electronics Engineering)

L	T	P
3	-	3

Rationale :

The modern trend of automation in the industries has reduced the unskilled and semiskilled man power need. The sophisticated and high tech. machine can only be handled by trained technician equipped with sufficient knowledge and skill component. Electronics instrumentation has vide application in modern industries. A diploma student needs to be introduced for such processes of measurements various types of multimeters, CRO, audio power meter, signal generators and bridges are basic components commonly used in industries. To energise electronic instruments power supplies are used as a constant voltage source so the student must be familiar with power supplies also.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Introduction	6	-	-
2.	Multimeters	9	-	-
3.	Electronic Multimeter	9	-	-
4.	A. C. Millivoltmeter	6	-	-
5.	Cathode Ray Oscillograph	12	-	-
6.	Audio Power Meter	9	-	-
7.	Signal Generator	9	-	-
8.	Impedance Bridges & Meters	9	-	-

9.	Regulated Power Supply	6	-	-
		75	-	75

DETAILED CONTENTS

1. INTRODUCTION TO THE PROCESS OF MEASUREMENTS:

- 1.1 Review of the terms, accuracy, precision, sensitivity range and errors, difference between accuracy, precision and resolution.
- 1.2 Precaution against high frequency noise pick up and remedies, shielding and grounding (two terminal and three terminals).
- 1.3 Concept of selective wide band measurements.

2. MULTIMETERS:

- 2.1 Principle of measurement of D.C. voltage and D.C. current, A.C. voltage and A.C. current and resistance in a multimeter.
- 2.2 Specifications of a multimeter and their significance.
- 2.3 Limitations with regards to frequency and impedance.

3. ELECTRONIC MULTIMETER:

- 3.1 Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity, principles of voltage, current and resistance measurements.
- 3.2 Specification of electronic multimeter and their significance.

4. A. C. MILLIVOLTMETER:

- 4.1 Types of AC millivoltmeters: Amplifier-rectifier and rectifier amplifier, block diagram and explanation of the above types of A.C. milli voltmeter.
- 4.2 Typical specifications and their significance.

5. CATHODE RAY OSCILLOSCOPE:

- 5.1 Construction of CRT, Electron gun, Electrostatic focussing and acceleration (Explanation only-no mathematical treatment) Deflection sensitivity, Brief mention of screen phosphor for CRT.

- 5.2 Explanation of time base operation and need for blanking during flyback, synchronisation.
- 5.3 Block diagram and explanation of a basic CRO and a triggered sweep oscilloscope, front panel controls.
- 5.4 Specifications of CRO and their significance.
- 5.5 Use of CRO for the measurement of voltage (D.C. & A.C.) frequency using Lissagious figure, time period, phase.
- 5.6 Special features of dual trace, delayed sweep and storage CROs (Brief mention only).
- 5.7 CRO probes including current probes.
- 5.8 Working Principle of Spectrum Analyzer.

6. AUDIO POWER METER:

- 6.1 Block diagram of an audio power meter.
- 6.2 Principles of working its application and high frequency limitations.
- 6.3 Scale conversion from power to db.

7. SIGNAL GENERATORS:

- 7.1 Block diagram explanation of laboratory type low frequency and RF signal generators, pulse generator and function generator.
- 7.2 Specification for low frequency signal generator, RF generator, pulse generator and function generator. Brief idea of testing specification for the above instruments.
- 7.3 Standard signal generator.

8. IMPEDANCE BRIDGES Q METERS:

- 8.1 Block diagram explanation of working principle of a laboratory types (balancing type) RLC bridge. Specifications of a RLC bridge, Principle of digital RLC bridge.
- 8.2 Block diagram and working principles of a Q meter.

9. REGULATED POWER SUPPLY:

- 9.1 Block diagram of regulated power supply.

- 9.2 Major specifications of regulated power supply, and their measurement (line and load regulation, output ripple and transients).
- 9.3 Basic working principles of switched mode power supply.
- 9.4 Concept of floating and grounded power supplies and their interconnections to obtain multiple output supplies.
- 9.5 Basic working principle of uninterrupted power supply

10. DIGITAL INSTRUMENTS:

- 10.1 Comparison of Analog and Digital instruments, characteristics of digital meter.
- 10.2 Working principle of Ramp, Dual slope and integrating type of digital voltmeter.
- 10.3 Block diagram and working of a digital multimeter.
- 10.4 Working principle of time interval frequency and period measurement using universal counter, frequency counter, time base stability and accuracy and resolution.

ELECTRONIC INSTRUMENTS AND MEASUREMENT LAB

List Of Practicals

1. Loading effect of a multimeter and its limitations to measure high frequency voltages.
2. Measurement of Q of a coil and its dependence on frequency using a Q meter.
3. Measurement of voltage, frequency, time period, phase angle and delay time using CRO : (use of Lissagious Figures).
4. Measurement of time period, frequency, average period using universal counter frequency counter.
5. To test a power supply for ripple line and load regulation.

6. Measurement of rise, fall and delay time using a CRO.
7. Measurement of distortion of a LF signal generator using distortion factor meter.
8. Measurement of R.L. and C using a LRC bridge/universal bridge.

III YEAR

3.1 INDUSTRIAL MANAGEMENT AND ENTREPRENEURSHIP DEVELOPMENT

L	T	P
2	2/2	-

Rationale:

The knowledge of this subject is required for all engineering technicians, but it becomes more important for those technicians who wish to choose industry as their career. This course is designed to develop understanding of various functions of management, role of workers, and engineers, industrial safety, trade unions, wages and incentives, marketing, entrepreneurship, inventory control and industrial legislation.

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Principles of Management	10	4	-
2.	Human Resource Management	3	2	-
3.	Human and Industrial Relations	4	3	-
4.	Personnel Management	6	3	-
5.	Financial Management	6	3	-
6.	Material Management	4	3	-
7.	Labour, Industrial and Tax Laws	4	2	-
8.	Entrepreneurship Development	8	4	-
9.	Intellectual Property Rights	5	1	-
		50	25	-

DETAILED CONTENTS

1. PRINCIPLES OF MANAGEMENT :

Definition of management, Administration organisation, Functions management, Planning, Organizing, Co-ordination and control, Structure and function of industrial organisations, Leadership- Need for leadership, Factors to be considered for accomplishing effective leadership, Communication -Importance, Processes, Barriers to

communication, Making communication, Effective, formal and informal communication, Motivation - Factors determining motivation, Positive and negative motivation, Methods for improving motivation, Incentives, Pay promotion and rewards, Controlling - Just in time, Total quality management, Quality circle, Zero defect concept. Concept of Stress Management

2. HUMAN RESOURCE DEVELOPMENT :

Introduction, Staff development and career development, Training strategies and methods.

3. HUMAN AND INDUSTRIAL RELATIONS :

Human relations and performance in organisation, Understand self and others for effective behaviour, Industrial relations and disputes, Characteristics of group behaviour and Trade

unionism, Mob psychology, Labour welfare, Workers participation in management.

4. PERSONNEL MANAGEMENT :

Responsibilities of human resource management - Policies and functions, Selection - Mode of selection - Procedure - training of workers, Job evaluation and Merit rating - Objectives and importance wage and salary administration - Classification of wage, Payment schemes, Components of wage, Wage fixation.

5. FINANCIAL MANAGEMENT :

Fixed and working capital - resource of capital, Shares, types preference and equity shares, Debenture types, Public deposits, Factory costing, Direct cost, Indirect cost, Factory overhead, Fixation of selling price of product, Depreciation- Causes, Methods.

6. MATERIAL MANAGEMENT :

Objective of a good stock control system - ABC analysis of inventory, Procurement and consumption cycle, Reorder level, Lead time, Economic order quantity, Purchasing procedure, Stock keeping, Bin card.

7. LABOUR, INDUSTRIAL AND TAX LAWS :

Importance and necessity of industrial legislation, Types of labour laws and dispute, Factory Act 1948, Payment of Wages

Act 1947, Employee State Insurance Act 1948, Various types of taxes - Production Tax, Local Tax, Trade tax, Excise duty, Income Tax.

8. ENTREPRENEURSHIP DEVELOPMENT :

Concept of entrepreneurship, need of entrepreneurship in context of prevailing employment conditions of the country. Successful entrepreneurship and training for entrepreneurship development. Idea of project report preparation.

9. INTELLECTUAL PROPERTY RIGHTS :

Introduction to IPR (Patents, Copy Right, Trade Mark), Protection of undisclosed information, Concept and history of patents, Indian and International Patents Acts and Rules, Patentable and Nonpatentable invention including product versus Process.

NOTE : Entrepreneurship Awareness camp to be organised at a stretch for Two or Three days. Lectures will be delivered on Entrepreneurship by industries experts at institute level.

3.2 DATA STRUCTURE USING C & C++

(Common to Post Diploma in Computer Science & Engg. and Post Graduate Diploma In Computer Application)

L	T	P
3	2/2	4

Rationale :

For solution of different problems 'C' is a very powerful high level language. It is widely used in research and engineering problems. A software technician aware of this language will be useful for working in computer environment.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Basic Concepts.	8	3	
2.	Stacks And Queues	10	3	
3.	Lists	12	4	
4.	Sorting & Merging	11	4	
5.	Tables	11	3	
6.	Trees	12	4	
7.	Graphs	11	4	

DETAILED CONTENTS

1. BASIC CONCEPTS:

Basic concepts and notation & Mathematical background

2. STACKS AND QUEUES

Representation of stacks & queues, linked sequential.

3. LISTS:

List representation techniques, Multilinked structures, Dynamic storage allocation techniques.

4. SORTING ALGORITHMS

Insertion sorts, Bubble sort, Quicksort, Mergesort, Heapsort

5. TABLES: -

Searching sequential tables, Hash tables and Symbol tables, Heaps.r

6. TREES

Definitions and basic concepts, Linked tree representations, binary tree traversal algorithms, B-trees and their applications.

7. GRAPHS:

Depths-first-search.

DATA STRUCTURE USING C & C++

List of Experiments

1. Write a program on Linked List Using 'C' & C++.
2. Exercise on Stack, Queues. Using C & C++
3. Exercises on Sorting .

3.3 INTERNET & WEB TECHNOLOGY

(Common with Post Graduate Diploma In Computer Application,
Post Diploma In Information Technology)

L T P
3 - 4

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
9	1. Internet	30	-	-
	2. Web Technology	45	-	
		75	-	100

INTERNET

Introducing Internet, Its Uses : Why Internet, Basic internet Tools, E-Mail, Ftp, Telnet, Usenet News, Web Browsers, Search Engines, Yahoo, Archie, Infoseek, Veronica, World Wide Web.

How Internet works: Administration of Internet, How to Go On Internet : Requirements, Hardware, Software, ISP, Internet Account PPP/Shell. How to Use E-Mail Services On Internet Introducing Hotmail/Yahoo/Vsa-Net, How To Operate E-Mail address, How to Operate E-Mail Services : Sending E-Mail, Forwodring, Saving, Reading etc., How to attach files,

2. WEB TECHNOLOGY :

A. HTML:

Elements of HTML, HTML sources & Rules of nesting, syntax conventions, HTML Categories, text tags, Formatting WebPages by using Styles, adding pictures, image attribute , introduction to forms, tables and models,advantages & limitations of tables, frames, links. SS cascading style sheets, XHTML, XML, Client Side Scripting, Server Side Scripting, Managing data with SQL.

B. JAVA SCRIPTS:

i)JAVA SCRIPTS:what is a Java Scripts, adding, Java scripts to documents, embedding java scripts, linking java scripts, creating a page program with scripts. What is a Java and its applets, to make webpages run server scripts, activeX.

C. ASP PROGRAMMES :

What is ASP, What can ASP do for you, How to install IIS and Run ASP on windows XP, Basic syntax rules (V.B. Script, Java Script and o/p syntax used in ASP, Procedures, Functions, Forms. Radio buttons, Check Box, Data Base Connectivity.

D. Web building.

PRACTICAL

1. Exercises on E-Mail.
2. Exercises on to see web sites.
3. Development of different Websites using all tools.
4. Development of Websites using Frontpage

3.4 CONCEPTS OF RELATIONAL DATABASE MANAGEMENT SYSTEM USING ORACLE.

(Common to Computer Science & Engineering, Post Graduate Diploma in Computer Application, Post Diploma in Information Technology).

L	T	P
3	-	3

Rationale:

Relational Database management system is the modern technique of managing data. The knowledge of DBMS is very useful & effective in preparation of different types of application software like Inventory, Financial & Accounting system etc. The student equipped with knowledge of this subject will be useful in the areas of the computer application.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Concepts of DBMS	13	-	-
2.	Relational Database design	17	-	-
3.	File Organisation Techniques	13	-	-
4.	Security and Privacy	17	-	-
5.	SQL	15	-	-
		75	-	75

DETAILED CONTENTS

1. CONCEPTS OF DBMS :

Data items, DBA, Entity, Attributes, Logical and Physical data, Primary and secondary keys, Form of query, Redundancy, Schema and Sub-schema.

2. RELATIONAL DATABASE DESIGN

Define data model, classify data model, object based logical model, Record based data model, entity, attribute, Relationship, data model, network model, hierarchy model, top down approach, bottom approach of logical database, need of normalization. Types of normal form function and dependency, properties of relation.

3. FILE ORGANISATION TECHNIQUES

Sequential index, Sequential and Random File organisation technique and their relative advantages and disadvantages.

4. SECURITY AND PRIVACY

Integrity, protection, security, concurrency, recovery.

5. SQL

Introduction to SQL commands, Type of SQL commands and its application -DDL, DML, DLL,PL/SQL Commands.

RELATIONAL DATA BASE MANAGEMENT SYSTEM

List Of Practicals

1. Programms in ORACLE using relational structures for complicated systems.
2. Programms and reports generation through ORACLE & SQL.

3.5 JAVA PROGRAMMING

L T P
3 - 4

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	An Overview of Java	15	-	-
2.	Data Types & Control Statement	12	-	-
3.	Introducing Classes & Methods	12	-	-
4.	Inheritance	12	-	-
5.	Multi threaded Programming	12	-	-

6.	Input/Output Applits	12	-	-
		75	-	100

1. An Overview of JAVA:-

Introduction to Object Oriented Programming (two paradigms, abstraction, the three oops principles) creation of JAVA, JAVA Applits & applications, security & portability.

2. Data Types & Control statements:

Integer, floating point type, character, boolean, all Operators, JAVA's selection statements, iteration and jump statement

3. Introducing Classes & Methods:

Class fundamentals, declaring objects, overloading methods & constructs, access control, nested and inner classes, exploring the string class, Inheritance

4. Inheritance:

Inheritance basics, member access and inheritance.

5. Multi threaded Programming.:

The JAVA thread model, thread priority, synchronization, Messaging.

6. Input/Output Applits:

I/O Basics, byte streams & character streams, predefined streams, reading and writing console input/output, reading and writing files, applet fundamentals, applet class.

LIST OF PRACTICALS

PROGRAMS USING CONTROL STATEMENTS.

3.6 MIS & SYSTEM ANALYSIS & DESIGN

(Common to Post Diploma in Information Technology, Diploma in Computer Science & Engineering)

L	T	P
3	-	-

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Introduction to Management System	6	-	
2.	Level Of Management	10	-	
3.	Influence of Information Technology	12	-	
4.	The System Concepts & Characteristics	10	-	-
5.	Elements of a System & System Development	10	-	-
6.	Detailed System Analysis	9	-	-
12	-			
7.	Structured System Analysis Tools	9	-	-
8.	The process and Stages of System Design	9	-	-
		75	-	-

1. Introduction to Management System.

What is information, components of Information system. What is MIS, Meaning, need role and importance, evaluation of MIS, Traditional management System Vs MIS, components of MIS, Common managerial, Process, Planning, organising & Controlling. Types of information system TPS, DSS, MIS. Assumptions & limitations of each system. System requirements.

2. Level Of Management

Strategic, tactical & operational level, different functions of each level, characteristics of informations & its need. flow of information in levels, concepts of balance MIS, effectiveness and efficiency criteria.

3. Influence of Information Technology

Problems with MIS, causes and solutions, Knowledge requirements for MIS, need and role in decision making, advantages of knowledge based system, types of knowledge system. Knowledge requirement for MIS.

4. The System Concepts, Characteristics -

Organization, Interaction, Interdependence, Integration, Control Objective.

5. Elements of a System & System Development:

Inputs and outputs, Processors, Controls, Feedback, Environment, Boundaries and Interface, Examples of System. System Development Life Cycle, Phases in SDLC(Only Definition) - Problems Identification, Preliminary Investigation/Study, Types of Feasibility - Operational,

Technical, Economical, System Analysis, System Design, Testing, Implementation.

6. Detailed System Analysis-

Primary Investigation, Facts, Gathering and its techniques(Interviews, Questionnaires, Background Reading, On site Observation, Record Gathering)

7. Structured System Analysis Tools for

SSA(Data Flow Diagrams, Data Dictionary. Decision Tree, Decision Table, Pros and Cons of each Table.

8. The process and Stages of System Design:

Logical & Physical-Design, Design methodologies in Brief, Input/Output and Forms Design, Input Design(Input Data, Media and devices),Output Design.

3.7 COMPUTER GRAPHICS

L	T	P
3	-	4

Rationale :

Computers are, now a days, used in industry for designing and manufacturing purposes also. Computer graphics is a powerful tool for obtaining plenty of designs by variation of different parameters which are not ordinarily possible. It also gives quality assurance in the manufacturing industries. A student equipped with must knows, how will be useful in the relevant field.

TOPIC WISE DISTRIBUTION OF PERIODS

Sl.No.	Units	Coverage Time		
		L	T	P
1.	Introduction of Graphics	15	-	-
2.	Display Techniques & Devices	15	-	-
3.	Graphic Package & Display Files	15	-	-
4.	Two Dimensional transformation	15	-	-
5.	Input Devices	15	-	-
		75	-	100

DETAILED CONTENTS

1. INTRODUCTION:

Origins of computer Graphics, Display Device - General purpose Graphics Software, display of solids object.

2. DISPLAY TECHNIQUES AND DEVICES

Display Techniques and Devices: Point Plotting Technique Coordinate systems and incremental methods, line-Drawing Algorithms, circle Generators, Display Devices, CRT, Inheret Memory Devices, The storage tube display, Refresh line-draw display.

3. GRAPHIC PACKAGES AND DISPLAY FILES:

A Simple Graphics package Segments, Functions for Segmenting the Display files, posting and Unposting, Segment naming schemes, Appending the Segment display file structure. Geometric Models. Defining symbols procedures, Display procedure.

4. TWO DIMENSIONAL TRANFORMATION

Principles, concatenation Matrix representation. A line clipping Algorithm, Midpoint, division, Clipping other Graphics Entities, Polygon Clipping, Viewing Transformation. The windowing Transformation.

5. INPUT DEVICES:

Pointing and positioning Devices, Mouse lets, the light pen, Three Dimensional input devices.

LIst of Experiments

1. Practice on Computer Aided Drafting and Design.
2. Draw the Line & Circles
3. Transformation, Scaling, rotation of any objects.

RATIONALE:

A diploma student must have the knowledge of different types of pollution caused due to industrialisation and construction activities, so as he may help in balancing of eco-system and control pollution by providing controlling measures. They should be also aware of the environmental laws for effectively controlling the pollution of environment. The topics are to be taught in light of legislation Para-3.

TOPIC WISE DISTRIBUTION OF PERIODS:

SL. NO.	TOPIC	L	T	P
1.	Introduction	6		
2.	Pollution	3		
2.1	Water Pollution	8		
2.2	Air Pollution	8		
2.3	Noise Pollution	3		
2.4	Radio Active Pollution	4		
2.5	Solid Waste Management	5		
3.	Legislations	3		
4.	Environmental Impact Assessment	4		
5.	Disaster Management	6		
TOTAL		50	-	-

DETAILED CONTENTS

1. INTRODUCTION :

- Basics of ecology, Ecosystem, Biodiversity Human activities and its effect on ecology and eco system, different development i.e. irrigation, urbanization, road development and other engineering activities and their effects on ecology and eco system, Mining and deforestation and their effects.
- Lowering of water level , Urbanization.
- Biodegradation and Biodegradability, composting, bio remediation, Microbes .Use of biopesticides and biofungicides.
- Global warning concerns, Ozone layer depletion, Green house effect, Acid rain,etc.

2. POLLUTION :

Sources of pollution, natural and man made, their effects on living environments and related legislation.

2.1 WATER POLLUTION :

- Factors contributing water pollution and their effect.
- Domestic waste water and industrial waste water. Heavy metals, microbes and leaching metal.
- Physical, Chemical and Biological Characteristics of waste water.
- Indian Standards for quality of drinking water.
- Indian Standards for quality of treated waste water.
- Treatment methods of effluent (domestic waste water and industrial/ mining waste water), its reuse/safe disposal.

2.2 AIR POLLUTION :

Definition of Air pollution, types of air pollutants i.e. SPM, NOX, SOX, GO, CO2, NH3, F, CL, causes and its effects on the environment.

- Monitoring and control of air pollutants, Control measures techniques. Introductory Idea of control equipment in industries i.e.
 - A. Settling chambers
 - B. Cyclones
 - C. Scrubbers (Dry and Wet)
 - D. Multi Clones
 - E. Electro Static Precipitations
 - F. Bag Fillers.
- Ambient air quality measurement and their standards.
- Process and domestic emission control
- Vehicular Pollution and Its control with special emphasis of Euro-I, Euro-II, Euro-III and Euro IV.

2.3 NOISE POLLUTION :

Sources of noise pollution, its effect and control.

2.4 RADISACTIVE POLLUTION :

Sources and its effect on human, animal, plant and material, means to control and preventive measures.

2.5 SOLID WASTE MANAGEMENT :

Municipal solid waste, Biomedical waste, Industrial and

Hazardous waste, Plastic waste and its management.

3. LEGISLATION :

Preliminary knowledge of the following Acts and rules made thereunder-

- The Water (Prevention and Control of Pollution) Act - 1974.
- The Air (Prevention and Control of Pollution) Act - 1981.
- The Environmental Protection (Prevention and Control of Pollution) Act -1986. Rules notified under EP Act - 1986 Viz.
 - # The Manufacture, Storage and Import of Hazardous Chemical (Amendment) Rules, 2000
 - # The Hazardous Wastes (Management and Handling) Amendment Rules, 2003.
 - # Bio-Medical Waste (Management and Handling) (Amendment) Rules, 2003.
 - # The Noise Pollution (Regulation and Control) (Amendment) Rules, 2002.
 - # Municipal Solid Wastes (Management and Handling) Rules, 2000.
 - # The Recycled Plastics Manufacture and Usage (Amendment) rules, 2003.

4. ENVIRONMENTAL IMPACT ASSESSMENT (EIA) :

- Basic concepts, objective and methodology of EIA.
- Objectives and requirement of Environmental Management System (ISO-14000) (An Introduction).

5. DISASTER MANAGEMENT :

Definition of disaster - Natural and Manmade, Type of disaster management, How disaster forms, Destructive power, Causes and Hazards, Case study of Tsunami Disaster, National policy- Its objective and main features, National Environment Policy, Need for central intervention, State Disaster Authority- Duties and powers, Case studies of various Disaster in the country, Meaning and benefit of vulnerability reduction, Factor promoting vulnerability

reduction and mitigation, Emergency support function plan.

Main feature and function of National Disaster Management Frame Work, Disaster mitigation and prevention, Legal Policy Frame Work, Early warning system, Human Resource Development and Function, Information dissemination and communication.

3.9 PROJECT

L	T	P
-	-	4

Rationale:

The purpose of including project in curriculum is to develop skill and knowledge specifications of hardware used in computers. It will also develop the capability of assembly and testing of project and its stages.

GENERAL OBJECTIVE:

Purpose of the project work is :

- (i) To develop abilities of diagnosing problems.
- (ii) To develop the abilities to :
 - (a) Make literature survey.
 - (b) Design/develop/fabricate/test simple circuits.
 - (c) Prepare documents for electronic work.
 - (d) Work as a team.

1. COMPUTER SCIENCE PROJECT (SW/HW):

The student is expected to work on a project in consultation and acceptance with the instructor on either system software or hardware aspects related to industrial environment. The student is also expected to fabricate different cards used in PC, their testing and assembly of PC.

The end targets for the project should be well defined and evaluation should place major importance on meeting these targets.

2. DATA PROCESSING PROJECT:

The student is expected to work and learn from implementing an application software and study its functional and performance aspects and submit a report.

The evaluation must be based on the project report and the seminars.

3. MAINTENANCE PROJECT:

Similar as Computer Science Project (Software & Hardware), related to maintenance operation and evaluation of the systems.

DIPLOMA IN COMPUTER SCIENCE AND ENGINEERING
STAFF STRUCTURE

Intake of the Course Pattern of the Course	60 ANNUAL SYSTEM	
Sl. No.	Name of Post	No.
1.	Principal	1
2.	H.O.D.	1
3.	Lecturer Electronics	1
4.	Lecturer In Computer Science & Engineering	4
5.	Computer Programmer Cum Operator	3
6.	Lecturer in Maths	1
7.	Lecturer in Physics	1
8.	Lecturer in Comm. Tech.	1
9.	Lecturer in Elect. Engg.	1
10.	Steno Typist	1
11.	Accountant / Cashier	1
12.	Student / Library Clerk	1

13.	Store Keeper	1
14.	Class IV	6
15.	Sweeper	Part time as per requirement
16.	Chaukidar & Mali	As per justification

Note :

1. Services of other discipline staff of the Institute may be utilized if possible
2. Qualifications of Staff : as per service rule

SPACE REQUIREMENT

[A] ADMINISTRATIVE BLOCK

Sl. No.	Details of Space	Floor Area Sq. metres
1.	Principal's Room	30
2.	Confidencial Room	10
3.	Steno's Room	6
4. (a)	Office including Drawing Office	80
(b)	Record Room	20
5.	Staff Room	
	(a) Head 1	15
	(b) Lecturer 10 sq.m./ Lect. for 8 Lecturers	80
6.	Library and Reading room	150
7.	Store	100
8.	Students Common room	80
9.	Model Room	90

[B] Academic Block

Sl.No.	Detail of Space	@ Sq.m	Floor Area Sq.m.
1.	Class Room	60	180
2.	Drawing Hall	90	90
3.	Physics Lab		75
4.	Electrical Engg. Lab		120
5.	Electronic Laboratory		120
6.	Digital Electronics & Microprocessor Lab		120
7.	Computer Centre (Air Cond.Glass Partition and Special type pvc flooring and false ceiling), Two Computer Centers	120	
	For Space of 60 Sq. m		

[D] Student's Aminities

1.	Hostel	40	%	of Strength of Students
2.	Cycle Stand	50	%	of Strength of Students
3.	Canteen and Tuck shop	50		
4.	N.C.C. Room	70		
5.	Dispensary	40		
6.	Guest Room(Attached Bath) incuding kitchen & store	45		

[E] STAFF RESIDENCES

1.	Principal	1	100	100
2.	Head of the Department	1	100	100
3.	Lecturer	4	80	320
4.	Non teaching & Supporting staff	8	60	480
5.	Class IV	6	30	180

Priorty to be given in following order

(1)

- Administrative Building
- Labs
- Over head Tank
- Boundary Wall
- Principal Residence
- Forth Class Quarters (2/3)

(2)

- Hostel
- Students Aminities

(3)
Residences of employee

ELECTRONICS LABORATORY

Electronic Components And Devices Lab.

S.No. Cost	Name of the Equipment/ Board/Kit Etc.	Elex. Components & & Devices . Lab.	Rate per		Total
			Intake	In Rs.	
45			30	45	30
6000	1. Auto Oscillator	2 3	2000	4000	
3000	2. Multimeter, 20 K. Ohm per volt Sensitivity, + 1% accuracy d.c. voltage 2500 v. max.	2 3	1000	2000	
27000	3. Digital Elex. multimeter.	7 9	3000	2100	
14000	4. Regulated Power Supply 0-30 V,	5 7	2000	10000	

		0.5/1 Amps.					
7500	5.	Dual Power Supply 0-30 V, 1Amps	2	3		2500	5000
	6.	Power Supply 0-300 Volt	-	-			
30000	7.	C.R.O. (0-10 MHz)	2	3		10000	20000
30000	8.	Dual Trace C.R.O. (0-10 MHz)	1	2		15000	15000
	9.	R.F. Signal Generator	-	-			
	10.	Function Generator	-	-			
	11.	A.C. Millivolt Meter (Elex.)	-	-			
	12.	Out Put Audio Power Meter	-	-			
		215 K - 20 K & 1 MW - 10 MW					
1000	13.	A.C. Milliammeter/A.C. Micro- meter & A.C. Millivoltmeter (Suitable range)	4	5		200	800
	14.	D.C. Voltmeter /D.C. Milliamme- ter/D.C. Micrometer (suitable range)	20	25		200	4000
	15.	Decade Resistance Box	-	-			

Cont.

S.No.	Name of the Equipment/ Board/Kit Etc.	Elex. Components & Mat. Lab.	Rate per Piece	Total Cost
45	17. Decade Inductance Box	Intake 30	In Rs. 45	Intake 30
	18. Different Transducers :	-	-	-
	pressure type, thermo couple,			
	LVFT, Opto pick electromagnetic			
	pick up; Thermal relay, ultra-			
	sonic pick up and potentiometer			
	etc. including strain gauge			

19.	Experimental Kit/	2*	3*		--	
	Teaching Modules/	+	+			
	Training boards/	30	40			
	Learning kits. of relevant					
	subject.					
20.	Component Storage rack	2	2		--	
21.	Consumable Items	LS	LS		--	
22.	Miscellaneous	LS	LS		--	
<hr/>						
----- -----						
Total Money Required :-						

NOTE:- * Represents the quantity of learning kits/teaching module. This item is more costly as compared to training boards/experimental kits etc.

S.No.	Name of the Equipment/ Board/Kit Etc.			Principles of Digital	Micropro- cessors & Eltx. Lab.	Applicat- ion Lab.	Total
Total No.	Rate per Recommen- Piece	Total Cost	Board/Kit Etc.				
45	30	45					
1	25000	25000	25000	1	1	-	1
			time base, 25 MHz or higher				
			band width.				
2	15000	15000	30000	1	2	-	1
4	10000	30000	40000	2	2	1	3
3	2500	5000	7500	2	3	-	2
			sensitivity, 1% accuracy in				
			D.C. voltage range, Max. D.C.				
			voltage range 2500 V, A.C Curr-				
			ent.				
5	2000	6000	10000	2	3	1	3
			3 1/2 digit, 0.3% accuracy				
			1000 V D.C. and 20 m ohm res-				
			istance range protected				

LABORATORY

ELECTRONICS WORKSHOP AND PROJECT

Electronic Instruments and Measurements Lab.

1	25.	Gen. Purpose CRO; 5 MHz.	1	2	-	-	1	2	1
	10000	10000 10000							
10	26.	Tools Kit	10	15	-	-	10	15	8
	500	4000 5000	SET	SET			SET	SET	SET
SET									
LS	27.	Misc. Active Components	LS	LS	-	-	LS	LS	LS
	--	8000 10000							
LS	28.	Misc. Accessories as per req.	LS	LS	-	-	LS	LS	LS
	--	2000 3000							
LS	29.	Misc. Passive components.	LS	LS	-	-	LS	LS	LS
	--	3000 4000							
LS	30.	Working Models of analog and digital equipment	LS	LS	-	-	LS	LS	LS
	--	5000 8000							
LS	31.	Dark room with Camera, Enlarger, Developing setup, Fixing & Printing setup etc.	LS	LS	-	-	LS	LS	LS
	--	50000 50000							
LS	32.	Manual Etching Setup	LS	LS	-	-	LS	LS	LS
	--	3000 4000							
LS	33.	Mechanised Etching Setup	LS	LS	-	-	LS	LS	LS
	--	5000 5000							
LS	34.	Silk-Screen Printing Setup	LS	LS	-	-	LS	LS	LS
	--	5000 5000							
3	35.	Drill Machine with stand	1	2	-	-	3	5	2
	2000	4000 6000							
LS	36.	Misc. Items	LS	LS	-	-	LS	LS	LS
	--	40000 60000							

LS	37.	Consumable(Not specified above)	LS	LS	LS	LS	LS	LS
	--	15000 25000						

LIST OF EQUIPMENTS

Only those of the equipments given below which are essentially required for the conduction of practicals mentioned in the curriculum are to be procured by the institutions.

"Machine/Equipments/Instruments of old BTE list which are not included below are to be retained in the Lab/Shop for Demonstration purpose but not to be demanded fresh for purchase."

NOTE : Equipment for different shop and lab of latest version should be purchased.

APPLIED PHYSICS LAB

S.No.	Name of Equipment	No.	@ Rs.	Amt.in Rs.
1.	Brass ball with hook 2 cm. dia	2	20	40
2.	Stop clock least count 0.1 Sec	2	500	1000
3.	Wall bracket with clamping arrangement	2	50	100
4.	Meter scale	5	20	100
5.	Convex lenses of focal length 10 cm., 20 cm., 50 cm. and 100 cm. 2 nos. of each	8	10	80
6.	Optical bench steel with pin and lence holders	2	500	1000
7.	Anstronomical telescope	1	500	500
8.	Searl's conductivity apparatus with copper & steel rods 25 X 4 cm. diameter with all accessaries	1 set	1000	1000
9.	Lea's conductivity app. complete with all accessaries	1 set	1000	1000
10.	Constant water flow arrangement	2	400	800
11.	Boiler made of copper 2 lt. cap.	4	200	800
12.	Platinum resistance thermometer	2	800	1600
13.	Potentiometer - 10 wires with jockey	1	500	500
14.	Meter bridge complete	1	250	250
15.	Lead accumulator 2.2 V. and 20 amp. hour capacity	2	250	500
16.	Moving coil galvenometer	3	200	600
17.	Moving coil ammeter 0-1 amp., 0-5 amp., 0-10 amp., 1 no of each	3	250	750
18.	Moving coil voltmeter 0-1 V. 0-5 V., 0-10 V. 1 No of each	3	250	750
19.	Lechlanchi cell complete	3	100	300
20.	Resonance col. of steel tube with			

	tuning forcs and other accessaries	1	500	500
21.	Tuning forcs set of different frequencies	1 set	1000	1000
22.	App. for determining coefficient of friction on a horrizontal plane	1 set	1000	1000
23.	Appratus for determining characteristics of P-N junction diode complete with all accessaries	1 set	1500	1500
24.	Post office box dial type	1	1200	1200
25.	Resistance box 0-10 ohm., 0-100 ohm. 2 nos. each	4	400	1600
26.	Rehostat of different ohm.capacity	8	250	2000
27.	Physical balance with weight box	2	800	1600
28.	Set of fractional weights	10	20	200
29.	Fortin's barometer with mercury	1	2500	2500

S.No.	Name of Equipment	No.	@ Rs.	Amt.in Rs.
30.	Battery eleminator 6 V. & 3 amp.	1	250	250
31.	Lab tables	3	8000	24000
32.	Lab stools	10	100	1000
33.	Anemometer cup type	1	1000	1000
34.	Anemometer hand held	1	1000	1000
35.	Suryamapi	1	1500	1500
36.	Insolation meter	1	1500	1500
	Misc.		Lum Sum	5000

ELECTRICAL ENGINEERING LAB

Sl. No.	Equipment	Qty.	Price
1.	Ammeter -dynamometer type portable, moving coil, permanent magnet 150 mm uniform scale		
a.	Range 0 - 2.5 - 5 Amp.	2	1200
b.	Range 0 - 50 m A	1	500
c.	Range 0 - 500 mA	2	1000
2.	Ammeter - moving iron type Portable moving iron permanent		

magnet, 150 mm uniform scale

a. Range 0 - 5 Amp. 2 1000

b. Range 0 - 10/20 Amp. 2 1000

c. Range 0 - 500 mA/1000 mA 2 1000

3. Voltmeter dynamometer type
portable moving coil permanent
magnet 150 mm uniform scale

a. Range 0 - 5/10 V 2 1000

b. Range 0 - 15/30 V 1 1000

c. Range 0 - 50 mv/100 mv 1 1000

d. Range 0 - 125/500 V 1 1000

e. Range 250/500 V

4. Digital multimeter 1 3000
3.5 digit - display
D.C. voltage 0 - 1000 V in 5 steps
A.C. voltage 0 - 750 V in 5 steps
Resistance 0 - 20 M ohm in 6 steps
D.C. 0 - 10 A in 6 steps
A.C. 0 - 10 A in 6 steps
Power supply 9 V.

5. Analog multimeter (Portable) 1 1000
D.C. Voltage 0 0 1000 V
AC Voltage 0 2/5/10/25/100/250/1100 V.
Resistance 0 200 M ohm
DC 0 - 50 micro Amp./1 mA/10 mA/100mA/1A/10A
AC 0 - 100 mA/1A/25 A/10A

6. Wattmeter single phase (LPF= 0.2) 2 5000
portable dynamometer type, scale 150 mm
current range 0 - 5/10 Amps
voltage Range 0 - 250/500 V

7. Decade resistance box 1 1000
constantan coils, single dial
10x10, 10x100, 10x1000, 10x10,000 ohms

8. Continuously variable 0 - 1000 micro 1 1000
farad, 250 V

Sl. No.	Equipment	Qty.	Price
9.	Energymeter single phase induction type, industrial grade 5 A or 10 A, 250 V, 50 Hz.	1	2000

10.	Energymeter (Substandard) single phase, induction type 5 A/10A, 250 V, 50 Hz.	1	3000
11.	Power factor meter dynamometer type, eddy current damping, 50 Hz, scale length 150 mm range upto 20 amp, voltage range 300 V 10 F. range 0.5 log, unity 0.5 load.	1	5000
12.	Frequency meter (Reed type) 230 V, range for having 21 reeds for 40-60 Hz range.	1	500
13.	Rheostat sliding rheostats wound with evenly oxidised iron free nickel copper on vitreous enamelled round steel tube 150 ohms 2 Amps. 110 ohms 2.5 Amps.	1	600
		1	600
14.	Variable inductor single phase, 250 V, 2.5 KVAR continuously variable	1	2000
15.	Battery charger 12 V silicon bridge rectifier AC input 230 V, DC output suitable for charging 6 V And 12 V batteries provided with MC voltmeter 0 - 20 V and ammeter 0 - 5 A	1	1000
16.	Capacitors 2.5 microfarad, electrolytic type	4	200
17.	Q Meter frequency 0 - 30 MHz Q 0 to 500	1	4000
18.	LCR meter (digital) 3.5 digit display capacitance 0 to 20,000 microfarad inductance 0 to 200 Henry resistance 0 to 20 M ohms	1	8000
19.	LCR/Q bridge capable of measuring resistance, inductance and capacitance of range 8 amps, 0.012 to 10 M ohms, 4 to 10,000 H, 0.5 pico farad to 10 F.	1	5000

Sl. No.	Equipment	Qty.	Price
20.	Kelvin double bridge 10 x 0.1 ohms circular slide wire devided into 200 equal parts		
21.	Energy meter 3 phase induction type, 4 wire, industrial grade, 50 Hz, 10 A, 440 Volt	1	5000
22.	Energy meter (Sub standard) 3 phase, 4 wire, 440 V, 10A, 50 Hz induction type.		
23.	Transformer single phase core type, 230/110 V, 1 KVA, 50 Hz.	1	5000
24.	Universal shunt 0 - 75 A	1	2000
25.	Current transformer 10/25/50/5A as per IS 4201/1967 and 2705/1981	1	2000
26.	Potential transformer 10 VA, 415/110 V as per IS 4201/1967 and 2705/1981	1	2000
27.	Maxwells bridge	1	1000
28.	Laboratory D.C. power supply (220 V) static converter input from 3 phase 50 Hz, 415 volts A.C., output rating of 200 vatts to 260 watts, 50 amps, continuously varibale.	1	50,000
29.	Watt meter 3 phase induction type 2 element voltage range 0/300/600 V current range 0/5/10 A	1	2000
30.	Frequency meter - portable (Reed type) 45-55 Hz with 21 reeds Frequency meter digital portable 3.5 digit LED display range 20-99 Hz	1	2000
31.	Phase sequence indicator (Rotary) 3 phase, 415 V, 50 Hz	1	1000
32.	Phase sequence indicator (Indicating type)	1	1000

3 phase, 400 V, 50 Hz

33.	Galvanometer centre zero response time 1.8 sec.	1	1000
34.	VAR meter 1/5 A, 300/600 V	1	2000

Sl. No.	Equipment	Qty.	Price
35.	Wire wound rheostats		
15	ohms, 10 A	2	1200
100	ohms, 5 A	2	1200
250	ohms, 5 A	2	1200
1000	ohms, 0.5 A	2	1200
2500	ohms, 0.1 A	2	1200
36.	Stop watch least count 0.01 Sec.	2	2000
37.	Stop watch (digital) LED	2	2000

COMPUTER CENTRE

S.No.	DESCRIPTION	QTY.	APPROX. COST (in Rs.)
1	Latest Version-Core-2 Dual Processor 62 2 MB L2 Cache, 2.4 Ghz ofr Higher 1 GB DDR2 RAM,160 GB SATA HDD,72K RPM MONITOR COLOUR 17" TFT DVD Writer, Multi Media Kit with Speaker & Microphone FDD - 1.44 MB Key Board - Multimedia Mouse - Optical Scrool Fibre Mouse 32 Bit PCI ETHERNET CARD(10/100) Mbps Internal Modem, Pen Drive 2GB, Blue Tooth Pre loaded Windows XP/2000/VISTA Pre loaded latest Anti Virus with licence media and manual with UPS 660 VA OR		20,000,00=00 (60+2Server)

Computer of latest Specification

2. Lap Top (Latest Version) 04 300000.00

3. Software :(With Licence)

- i WINDOWS - XP/2000/VISTA
- ii ORACLE 9i or Latest Windows based (20 USERS) & Development (Latest)
- iii. VISUAL STUDIO (professional)
- iv. MS OFFICE XP
- v. COMPILER - 'C', C++, JAVA
- vi. Unix & Linux
- vii. Front Pange, Internet Explorer, Page Maker Corel Draw, Dream Weaver
- viii. Personal Web Server, HTML, IIS
- ix. Tally

3. Hardware

i.	Switch-16,8,24 Port all accessories related to Networking.	100000.00
ii.	Scanner- A4/Auto lighter Scanner	02 25000.00
4.	132 Column 600 CPS or faster 9 Pin dot matrix printer with 500 million character head life	02 50000.00
5.	Laser Jet-A4, All In One (2 Each)	04 70000.00
6.	Desk Jet-A4, Photo Smart(2 Each)	04 40000.00
7.	5 KVA on line UPS with minimum 30 minuite battery backup along with sealed maintenance free batteries. Provision for connecting external batteries with network connectivity. (For 2 Labs)	04 400000.00
7.	Split Air Conditioner 1.5 tones capctity with ISI mark alongwith electronic voltage stablizer with over voltage and time delay circuit	08 300000.00
8.	Room preparation and furniture	LS
9.	Cat-6 cabling for network	LS
10.	2 KVA Inverter Cum UPS	02 50000.00
11.	Digital Camera	01 25000.00
14.	Fire Extinguisher (2 Kg.)	04 15000.00
16.	Fire Extinguisher (5 Kg.)	04 30000.00
17.	Vaccum Cleaner	02 15000.00
18.	LCD Projector	02 200000.00
19.	Pen drive 1GB, 2GB, 4 GB	10 15000.00
20.	DVD writer External	02 5000.00
21.	HDD External 160 GB	02 10000.00
22.	PDA (Latest Configuration)	02 10000.00
23.	Broadband For Internet(Speed Min. 8mbps)	04
24.	USB Modem	02 10000.00
25.	Generator 10 KVA Water Coolent	01 100000.00

NOTE : All the above items should be equally distributed in the 2 computer centres

HARDWARE MAINTENANCE & PROJECT LAB

S.No.	Descriprion	Qty.	Approximate Cost.
1.	Digital Multimeter	12	24,000
2.	Power Supply	10	30,000
3.	Latest Version-Core-2 Dual Processor 2 MB L2 Cache, 2.4 Ghz or Higher, 1 GB DDR2 RAM, 160 GB SATA HDD, 72K RPM, CD/DVD Drive	10	400000
4.	Printer (600 cps) a) Dot Matrix b) Desk Jet c) Laser	2 Each	100000
5.	Constant Voltage Transformer	4	32,000
6.	PC Card Sets (One Mother Board, 4 Cards)	2	20,000
7.	Spike Buster	10	5,000
8.	Tool Kit	10 Set	50000

7. LEARNING RESOURCE MATERIALS

1.	Overhead Projector with screen	1	--	20000
----	--------------------------------	---	----	-------

2.	35 m.m. Slide cum Film Projector	1	--	50000
3.	Audio Cassette Recorder	1	--	15000
4.	V.C.R. with Monitor & Accessories	1	--	35000
5.	Photography Camera for Production of slide and film strips, 35 mm still camera dark room equipment.	1	--	100000
6.	Cutting, Binding & Stitching equipment.	1	--	30000
7.	L. C. D. Projector	1	--	400000

ANNEXURE-QUESTIONNAIRE

INSTITUTE OF RESEARCH, DEVELOPMENT AND TRAINING U.P.KANPUR -208024

SUBJECT: Questionnaire for ascertaining the job potential and activities of diploma holder in Computer Science (Semester System).

PURPOSE: To design and develop Three Year (Six Semester) diploma curriculum in Computer Science (Semester System).

NOTE:

1. Please answer the questions to the points given in the questionnaire.
2. Any other point or suggestion not covered in this questionnaire may be written on a separate paper and enclosed with the questionnaire.

1. Name of the organisation: _____

2. Name & Designation of the officer filling the questionnaire _____

3. Name of the department/section/ shop _____

4. Important functions of the department/section/shop _____

5. Number of diploma holder employees under your charge in the area of Computer Science. _____

6. Please give names of modern equipments/machines handled by a diploma holder in Computer Science.

1.

2.

3.

4.

5.

6.

7. What proficiencies are expected from a diploma holder in Computer Science.

1.

2.

3.

4.

5.

6.

8. Mention the approximate percentage of the following desired in Diploma teaching.

1. Theoretical knowledge -----%

2. Practical knowledge -----%

3. Skill Development -----%

9. Do you think "on the job training" / Industrial training should form a part of curriculum. (Yes/ No)

if yes then

(a) Duration of training -----

(b) Mode of training 1. Spread over different semesters

2. After completion of course

3. Any other mode

10. What mode of recruitment is followed by your organisation.

1. Academic merit

2. Written test

3. Group discussion

4. Interview

5. On the job test.

11. Mention the capabilities/ Qualities looked for while recruiting diploma holder in Computer Science.

(a) Technical knowledge -----

(b) Practical skill -----

(c) Etiquettes and behaviour -----

(d) Aptitude -----

(e) Health, habit and social background -----

(f) Institution where trained -----

12. Does your organisation have Yes/No

any system for the survey of Home articles of different countries/States.

13. Does your organisation conduct field survey to know users views regarding.

1. Home Articles for different age groups and sex.

2. Effect of climatic conditions

3. Any other

If yes ; Please give brief account of each.

14. Which type of assignment do you suggest for an entrepreneur in Computer Science.

15. In which types of organisations can a diploma holder in Computer Science can work or serve.

1

2

3

4

5

6

16. Job prospects for the diploma holder in Computer Science the next ten years in the state / country.

17. In your opinion what should be the subjects to be taught to a

diploma student in Computer Science.

18. Kindly mention particulars regarding topics/areas which should be given more emphasis in the curriculum .

Theory

Practical

19. Kindly state whether your organisation can contribute towards improvement of curriculum in above field.

If yes : Please give names of experts in your organisation to whom contact.

20. Kindly give your valuable suggestions for being considered at the time of finalisation of curriculum.

21. What changes in technologies are to be incorporated in the development of curriculum in Computer Science.

(Signature)

Kindly mail the above questionaire duly filled to:-

R. P. Alam
Assistant Professor
Institute of Research, Development & Training, U.P.
Kanpur-208024

(Please note that all information in this survey is confidential
for the use of curriculum design only)

ANNEXURE- 2 FIELD EXPOSURE SCHEDULE

All the students of second year after annual examination will undergo in industrial training for a period of four week in Industries dealing with computers. It will in all respect end by the end of summer vacation. It will be arranged and supervised by institute staff. The performa for preparing a report of his stay. There in the industry given below can be taken as a guide for the purpose.

1. Name & Address of the organisation
2. Nature of the industry and its activity.
3. Date of
 - i. Joining
 - ii. Leaving
4. Details of the sections of the industry visited.
 - i. Name of tools, equipments instruments in use.
 - ii. Activities of the section
 - iii. Study of the components, devices used in complete assemblies.
 - iv. Soldering and de-soldering techniques used in circuit fabrication.

v. Study of PCB Lay out developing and preparation.

vi. Checking and testing of the components used.

vii. Final checking of the product.

viii. Description of quality control measures taken in industry.
